Regular phase operator and SU(1,1) coherent states of the harmonic oscillator

被引:5
|
作者
Varro, Sandor [1 ,2 ]
机构
[1] Hungarian Acad Sci, Inst Solid State Phys & Opt, Wigner Res Ctr Phys, H-1525 Budapest, Hungary
[2] ELI ALPS, ELI Hu Nkft, H-6720 Szeged, Hungary
关键词
harmonic oscillator; phase operator; SU(1,1) coherent states; HOLSTEIN-PRIMAKOFF REALIZATION; QUANTUM PHASE; WIGNER FUNCTION; PROBABILITY-DISTRIBUTION; ANGLE VARIABLES; NUMBER; QUANTIZATION; SPACE; REPRESENTATION; DISTRIBUTIONS;
D O I
10.1088/0031-8949/90/7/074053
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A new solution is proposed to the longstanding problem of describing the quantum phase of a harmonic oscillator. In terms of an 'exponential phase operator', defined by a new 'polar decomposition' of the quantized amplitude of the oscillator, a regular phase operator is constructed in the Hilbert-Fock space as a strongly convergent power series. It is shown that the eigenstates of the new 'exponential phase operator' are SU(1,1) coherent states associated to the Holstein-Primakoff realization. In terms of these eigenstates the diagonal representation of phase densities and a generalized spectral resolution of the regular phase operator are derived, which are very well suited to our intuitive pictures of classical phase-related quantities.
引用
收藏
页数:18
相关论文
共 50 条
  • [21] APPLICATION OF SU(1,1) COHERENT STATES TO THE INTERACTION OF SQUEEZED LIGHT IN AN ANHARMONIC-OSCILLATOR
    GERRY, CC
    PHYSICAL REVIEW A, 1987, 35 (05): : 2146 - 2149
  • [22] ON THE CONSTRUCTION OF GENERALIZED SU(1,1) COHERENT STATES
    Berrada, K.
    El Baz, M.
    Hassouni, Y.
    REPORTS ON MATHEMATICAL PHYSICS, 2011, 68 (01) : 23 - 35
  • [23] Time evolution of SU(1,1) coherent states
    Zalesny, J.
    Acta Physica Polonica A, 2001, 98 (1-2) : 11 - 22
  • [24] Completeness relations for SU(1,1)-coherent states
    Wünsche, A
    Vourdas, A
    GROUP 22: PROCEEDINGS OF THE XII INTERNATIONAL COLLOQUIUM ON GROUP THEORETICAL METHODS IN PHYSICS, 1998, : 479 - 483
  • [25] DYNAMICS OF PULSED SU(1,1) COHERENT STATES
    GERRY, CC
    VRSCAY, ER
    PHYSICAL REVIEW A, 1989, 39 (11): : 5717 - 5724
  • [26] Time evolution of Su(1,1) coherent states
    Zalesny, J
    ACTA PHYSICA POLONICA A, 2000, 98 (1-2) : 11 - 22
  • [27] Perelomov SU(1,1) coherent superposition states
    Wang, Xiaoguang
    Yu, Rongjin
    Changsha Tiedao Xuyuan Xuebao/Journal of Changsha Railway University, 1999, 17 (02): : 865 - 868
  • [28] Explicit n-particle harmonic oscillator states in products of SU(1,1) representations
    Kakekaspan, Noah
    de Guise, Hubert
    INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2024, 22 (06)
  • [29] Quantum Fisher Information for su (2) Atomic Coherent States and su (1,1) Coherent States
    Song, Qi
    Liu, Honggang
    Zhao, Yuefeng
    Zeng, Yan
    Wang, Gangcheng
    Xue, Kang
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2016, 55 (03) : 1679 - 1685
  • [30] Infinite statistics and the SU(1,1) phase operator
    Gerry, CC
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2005, 38 (14): : L213 - L217