The super connectivity of augmented cubes

被引:63
|
作者
Ma, Meijie [1 ]
Liu, Guizhen [2 ]
Xu, Jun-Ming [3 ]
机构
[1] Zhejiang Normal Univ, Dept Math, Jinhua 321004, Peoples R China
[2] Shandong Univ, Sch Math & Syst Sci, Jinan 250100, Peoples R China
[3] Univ Sci & Technol China, Dept Math, Anhua 230026, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金; 高等学校博士学科点专项科研基金;
关键词
interconnection networks; augmented cube; super connectivity; super edge-connectivity;
D O I
10.1016/j.ipl.2007.10.005
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The augmented cube AQ(n), proposed by Choudum and Sunitha [S.A. Choudum, V. Sunitha, Augmented cubes, Networks 40 (2) (2002) 71-84], is a (2n - 1)-regular (2n - 1)-connected graph (n not equal 3). This paper determines that the super connectivity of AQ(n) is 4n - 8 for n >= 6 and the super edge-connectivity is 4n - 4 for n >= 5. That is, for n >= 6 (respectively, n >= 5), at least 4n - 8 vertices (respectively, 4n - 4 edges) of AQ(n) are removed to get a disconnected graph that contains no isolated vertices. When the augmented cube is used to model the topological structure of a large-scale parallel processing system, these results can provide more accurate measurements for reliability and fault tolerance of the system. (C) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:59 / 63
页数:5
相关论文
共 50 条
  • [31] The forwarding indices of augmented cubes
    Xu, Min
    Xu, Jun-Ming
    INFORMATION PROCESSING LETTERS, 2007, 101 (05) : 185 - 189
  • [32] Cycle embedding of augmented cubes
    Hsieh, Sun-Yuan
    Shiu, Jung-Yiau
    APPLIED MATHEMATICS AND COMPUTATION, 2007, 191 (02) : 314 - 319
  • [33] On the surface area of the augmented cubes
    Eddie Cheng
    Ke Qiu
    Zhizhang Shen
    The Journal of Supercomputing, 2012, 61 : 856 - 868
  • [34] The optimal routing of augmented cubes
    Chen, Meirun
    Naserasr, Reza
    INFORMATION PROCESSING LETTERS, 2018, 136 : 59 - 63
  • [35] On the surface area of the augmented cubes
    Cheng, Eddie
    Qiu, Ke
    Shen, Zhizhang
    JOURNAL OF SUPERCOMPUTING, 2012, 61 (03): : 856 - 868
  • [36] On regular subgraphs of augmented cubes
    Shinde, Amruta
    Borse, Y. M.
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2020, 17 (03) : 734 - 743
  • [37] The panpositionable panconnectedness of augmented cubes
    Kung, Tzu-Liang
    Teng, Yuan-Hsiang
    Hsu, Lih-Hsing
    INFORMATION SCIENCES, 2010, 180 (19) : 3781 - 3793
  • [38] Fault hamiltonicity of augmented cubes
    Hsu, HC
    Chiang, LC
    Tan, JJM
    Hsu, LH
    PARALLEL COMPUTING, 2005, 31 (01) : 131 - 145
  • [39] The Two-Good-Neighbor Connectivity and Diagnosability of the Augmented Three-Ary n-Cubes
    Wang, Shiying
    Zhao, Nan
    COMPUTER JOURNAL, 2020, 63 (01): : 1 - 15
  • [40] Structure connectivity and substructure connectivity of Möbius cubes
    Zhao, Xiaojun
    Xue, Shudan
    Deng, Qingying
    Li, Pingshan
    COMPUTER JOURNAL, 2024, : 3207 - 3220