The super connectivity of augmented cubes

被引:63
|
作者
Ma, Meijie [1 ]
Liu, Guizhen [2 ]
Xu, Jun-Ming [3 ]
机构
[1] Zhejiang Normal Univ, Dept Math, Jinhua 321004, Peoples R China
[2] Shandong Univ, Sch Math & Syst Sci, Jinan 250100, Peoples R China
[3] Univ Sci & Technol China, Dept Math, Anhua 230026, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金; 高等学校博士学科点专项科研基金;
关键词
interconnection networks; augmented cube; super connectivity; super edge-connectivity;
D O I
10.1016/j.ipl.2007.10.005
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The augmented cube AQ(n), proposed by Choudum and Sunitha [S.A. Choudum, V. Sunitha, Augmented cubes, Networks 40 (2) (2002) 71-84], is a (2n - 1)-regular (2n - 1)-connected graph (n not equal 3). This paper determines that the super connectivity of AQ(n) is 4n - 8 for n >= 6 and the super edge-connectivity is 4n - 4 for n >= 5. That is, for n >= 6 (respectively, n >= 5), at least 4n - 8 vertices (respectively, 4n - 4 edges) of AQ(n) are removed to get a disconnected graph that contains no isolated vertices. When the augmented cube is used to model the topological structure of a large-scale parallel processing system, these results can provide more accurate measurements for reliability and fault tolerance of the system. (C) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:59 / 63
页数:5
相关论文
共 50 条
  • [21] Fault-Tolerant Maximal Local-Edge-Connectivity of Augmented Cubes
    Zhai, Liyang
    Xu, Liqiong
    Yang, Weihua
    PARALLEL PROCESSING LETTERS, 2020, 30 (03)
  • [22] Connectivity of Fibonacci cubes, Lucas cubes, and generalized cubes
    Azarija, Jernej
    Klavzar, Sandi
    Lee, Jaehun
    Rho, Yoomi
    DISCRETE MATHEMATICS AND THEORETICAL COMPUTER SCIENCE, 2015, 17 (01): : 79 - 88
  • [23] Automorphisms of augmented cubes
    Choudum, S. A.
    Sunitha, V.
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2008, 85 (11) : 1621 - 1627
  • [24] The Path-Structure Connectivity of Augmented k-ary n-cubes
    Ba, Lina
    Zhang, Yaxian
    Zhang, Heping
    COMPUTER JOURNAL, 2023, 66 (12): : 3119 - 3128
  • [25] Packing internally disjoint Steiner trees to compute the κ3-connectivity in augmented cubes
    Wei, Chao
    Hao, Rong-Xia
    Chang, Jou-Ming
    JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING, 2021, 154 : 42 - 53
  • [26] Super fault-tolerance assessment of locally twisted cubes based on the structure connectivity
    Kung, Tzu-Liang
    Teng, Yuan-Hsiang
    Lin, Cheng-Kuan
    THEORETICAL COMPUTER SCIENCE, 2021, 889 : 25 - 40
  • [27] Reliability of augmented k-ary n-cubes under the extra connectivity condition
    Xueli Sun
    Jianxi Fan
    Eminjan Sabir
    Baolei Cheng
    Jia Yu
    The Journal of Supercomputing, 2023, 79 : 13641 - 13669
  • [28] (2n - 3)-fault-tolerant Hamiltonian connectivity of augmented cubes AQn
    Zhang, Huifeng
    Xu, Xirong
    Wang, Ziming
    Zhang, Qiang
    Yang, Yuansheng
    AIMS MATHEMATICS, 2021, 6 (04): : 3486 - 3511
  • [29] Reliability of augmented k-ary n-cubes under the extra connectivity condition
    Sun, Xueli
    Fan, Jianxi
    Sabir, Eminjan
    Cheng, Baolei
    Yu, Jia
    JOURNAL OF SUPERCOMPUTING, 2023, 79 (12): : 13641 - 13669
  • [30] FAULT TOLERANCE OF AUGMENTED CUBES
    Ma, Meijie
    Song, Yaxing
    Xu, Jun-Ming
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2013, 10 (01) : 37 - 55