Using a new relational concept to improve the clustering performance of search engines

被引:7
|
作者
Chen, Lin-Chih [1 ]
机构
[1] Natl Dong Hwa Univ, Dept Informat Management, Shoufeng 97401, Hualien, Taiwan
关键词
Document clustering; Semantic relation; Relational concept; Web search engines; Web documents; RETRIEVAL;
D O I
10.1016/j.ipm.2010.04.001
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we present a novel clustering algorithm to generate a number of candidate clusters from other web search results. The candidate clusters generate a connective relation among the clusters and the relation is semantic. Moreover, the algorithm also contains the following attractive properties: (1) it can be applied to multilingual web documents, (2) it improves the clustering performance of any search engine, (3) its unsupervised learning can automatically identify potentially relevant knowledge without using any corpus, and (4) clustering results are generated on the fly and fitted into search engines. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:287 / 299
页数:13
相关论文
共 50 条
  • [31] Adaptive Concept Learning through Clustering and Aggregation of Relational Data
    Frigui, Hichem
    Hwang, Cheul
    PROCEEDINGS OF THE SEVENTH SIAM INTERNATIONAL CONFERENCE ON DATA MINING, 2007, : 90 - 101
  • [32] Search Engines: Gateway to a New "Panopticon"?
    Kosta, Eleni
    Kalloniatis, Christos
    Mitrou, Lilian
    Kavakli, Evangelia
    TRUST, PRIVACY AND SECURITY IN DIGITAL BUSINESS, PROCEEDINGS, 2009, 5695 : 11 - +
  • [33] Using Locality Preserving Projections to Improve the Performance of Kernel Clustering
    Zhan, Mengmeng
    Lu, Guangquan
    Wen, Guoqiu
    Zhang, Leyuan
    Wu, Lin
    NEURAL PROCESSING LETTERS, 2020, 52 (03) : 1827 - 1842
  • [34] Using Locality Preserving Projections to Improve the Performance of Kernel Clustering
    Mengmeng Zhan
    Guangquan Lu
    Guoqiu Wen
    Leyuan Zhang
    Lin Wu
    Neural Processing Letters, 2020, 52 : 1827 - 1842
  • [35] Using data clustering to improve cleaning performance for flash memory
    Chiang, ML
    Lee, PCH
    Chang, RC
    SOFTWARE-PRACTICE & EXPERIENCE, 1999, 29 (03): : 267 - 290
  • [36] Using group genetic algorithm to improve performance of attribute clustering
    Hong, Tzung-Pei
    Chen, Chun-Hao
    Lin, Feng-Shih
    APPLIED SOFT COMPUTING, 2015, 29 : 371 - 378
  • [37] Concept discovery on relational databases: New techniques for search space pruning and rule quality improvement
    Kavurucu, Y.
    Senkul, P.
    Toroslu, I. H.
    KNOWLEDGE-BASED SYSTEMS, 2010, 23 (08) : 743 - 756
  • [39] Evidential relational clustering using medoids
    Zhou, Kuang
    Martin, Arnaud
    Pan, Quan
    Liu, Zhun-ga
    2015 18TH INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION), 2015, : 413 - 420
  • [40] ACE: Improving search engines via automatic concept extraction
    Ramirez, PM
    Mattmann, CA
    PROCEEDINGS OF THE 2004 IEEE INTERNATIONAL CONFERENCE ON INFORMATION REUSE AND INTEGRATION (IRI-2004), 2004, : 229 - 234