Using a new relational concept to improve the clustering performance of search engines

被引:7
|
作者
Chen, Lin-Chih [1 ]
机构
[1] Natl Dong Hwa Univ, Dept Informat Management, Shoufeng 97401, Hualien, Taiwan
关键词
Document clustering; Semantic relation; Relational concept; Web search engines; Web documents; RETRIEVAL;
D O I
10.1016/j.ipm.2010.04.001
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we present a novel clustering algorithm to generate a number of candidate clusters from other web search results. The candidate clusters generate a connective relation among the clusters and the relation is semantic. Moreover, the algorithm also contains the following attractive properties: (1) it can be applied to multilingual web documents, (2) it improves the clustering performance of any search engine, (3) its unsupervised learning can automatically identify potentially relevant knowledge without using any corpus, and (4) clustering results are generated on the fly and fitted into search engines. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:287 / 299
页数:13
相关论文
共 50 条
  • [21] A parametric architecture for tags clustering in folksonomic search engines
    Di Matteo, Nicola Raffaele
    Peroni, Silvio
    Tamburini, Fabio
    Vitali, Fabio
    2009 9TH INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEMS DESIGN AND APPLICATIONS, 2009, : 279 - +
  • [22] On using supervised clustering analysis to improve classification performance
    Gan, Haitao
    Huang, Rui
    Luo, Zhizeng
    Xi, Xugang
    Gao, Yunyuan
    INFORMATION SCIENCES, 2018, 454 : 216 - 228
  • [23] Clustering e-commerce search engines based on their search interface pages using WISE-Cluster
    Lu, Yiyao
    He, Hai
    Peng, Qian
    Meng, Weiyi
    Yu, Clement
    DATA & KNOWLEDGE ENGINEERING, 2006, 59 (02) : 231 - 246
  • [24] Are pay for performance search engines relevant?
    Goh, DH
    Ang, RP
    JOURNAL OF INFORMATION SCIENCE, 2002, 28 (05) : 349 - 355
  • [25] Performance evaluation of desktop search engines
    Lu, Chang-Tien
    Shukla, Manu
    Subramanya, Siri H.
    Wu, Yamin
    IRI 2007: PROCEEDINGS OF THE 2007 IEEE INTERNATIONAL CONFERENCE ON INFORMATION REUSE AND INTEGRATION, 2007, : 110 - +
  • [26] Improve academic search engines to reduce scholars' biases
    von Hippel, Paul T. T.
    Buck, Stuart
    NATURE HUMAN BEHAVIOUR, 2023, 7 (02) : 157 - 158
  • [27] Improve academic search engines to reduce scholars’ biases
    Paul T. von Hippel
    Stuart Buck
    Nature Human Behaviour, 2023, 7 : 157 - 158
  • [28] Improving search performance: A lesson learned from evaluating search engines using Thai queries
    Tongchim, Shisanu
    Sornlertlamvanich, Virach
    Isahara, Hitoshi
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2007, E90D (10): : 1557 - 1564
  • [29] A GA-Based Document Clustering Method for Search Engines
    Tsai, Chun-Wei
    Chiang, Ming-Chao
    Yang, Chu-Sing
    JOURNAL OF INTERNET TECHNOLOGY, 2008, 9 (04): : 375 - 383
  • [30] NEW GENERATION OF THE MULTIMEDIA SEARCH ENGINES
    Mijes Cruz, Mario Humberto
    Soto Aldaco, Andrea
    Maldonado Cano, Luis Alejandro
    Lopez Rodriguez, Mario
    Rodriguez Vazquez, Manuel Antonio
    Amaya Reyes, Laura Mariel
    Cano Martinez, Elizabeth
    Perez Rosas, Osvaldo Gerardo
    Rodriguez Espejo, Luis
    Flores Secundino, Jesus Abimelek
    Rivera Martinez, Jose Luis
    Garcia Vazquez, Mireya Sarai
    Zamudio Fuentes, Luis Miguel
    Sanchez Valenzuela, Juan Carlos
    Montoya Obeso, Abraham
    Acosta, Alejandro Alvaro Ramirez
    OPTICS AND PHOTONICS FOR INFORMATION PROCESSING X, 2016, 9970