Non-autonomous maximal regularity in Hilbert spaces

被引:14
|
作者
Dier, Dominik [1 ]
Zacher, Rico [1 ]
机构
[1] Univ Ulm, Inst Appl Anal, D-89069 Ulm, Germany
关键词
Sesquilinear forms; Non-autonomous evolution equations; Maximal regularity; EVOLUTION-EQUATIONS; L-P; FORMS; SOBOLEV; BESOV;
D O I
10.1007/s00028-016-0343-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider non-autonomous evolutionary problems of the form u' (t) + A(t) u(t) = f (t), u(0) = u(0), on , where H is a Hilbert space. We do not assume that the domain of the operator A(t) is constant in time t, but that A(t) is associated with a sesquilinear form . Under sufficient time regularity of the forms , we prove well-posedness with maximal regularity in . Our regularity assumption is significantly weaker than those from previous results inasmuch as we only require a fractional Sobolev regularity with arbitrary small Sobolev index.
引用
收藏
页码:883 / 907
页数:25
相关论文
共 50 条
  • [1] Non-autonomous maximal regularity in Hilbert spaces
    Dominik Dier
    Rico Zacher
    Journal of Evolution Equations, 2017, 17 : 883 - 907
  • [2] MAXIMAL REGULARITY FOR NON-AUTONOMOUS CAUCHY PROBLEMS IN WEIGHTED SPACES
    Mahdi, Achache
    Hossni, Tebbani
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2020,
  • [3] Maximal regularity for non-autonomous evolution equations
    Bernhard H. Haak
    El Maati Ouhabaz
    Mathematische Annalen, 2015, 363 : 1117 - 1145
  • [4] Maximal Regularity for Non-autonomous Evolutionary Equations
    Trostorff, Sascha
    Waurick, Marcus
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2021, 93 (03)
  • [5] Maximal Regularity for Non-autonomous Evolutionary Equations
    Sascha Trostorff
    Marcus Waurick
    Integral Equations and Operator Theory, 2021, 93
  • [6] Maximal regularity for non-autonomous evolution equations
    Haak, Bernhard H.
    Ouhabaz, El Maati
    MATHEMATISCHE ANNALEN, 2015, 363 (3-4) : 1117 - 1145
  • [7] Maximal regularity for non-autonomous stochastic evolution equations in UMD Banach spaces
    Ton Viet Ta
    Yagi, Atsushi
    Yamamoto, Yoshitaka
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2017, 127 (05): : 857 - 879
  • [8] Maximal regularity for semilinear non-autonomous evolution equations in temporally weighted spaces
    Tebbani Hossni
    Achache Mahdi
    Arabian Journal of Mathematics, 2022, 11 : 539 - 547
  • [9] Maximal regularity for semilinear non-autonomous evolution equations in temporally weighted spaces
    Hossni, Tebbani
    Mahdi, Achache
    ARABIAN JOURNAL OF MATHEMATICS, 2022, 11 (03) : 539 - 547
  • [10] Maximal regularity for non-autonomous stochastic evolution equations in UMD Banach spaces
    Tôn Việt Tạ
    Atsushi Yagi
    Yoshitaka Yamamoto
    Proceedings - Mathematical Sciences, 2017, 127 : 857 - 879