Maximal regularity for semilinear non-autonomous evolution equations in temporally weighted spaces

被引:0
|
作者
Hossni, Tebbani [1 ]
Mahdi, Achache [2 ]
机构
[1] Univ Setif 1, Setif, Algeria
[2] Univ Aix Marseille, CPT, CNRS, Marseille, France
关键词
OPERATORS;
D O I
10.1007/s40065-022-00390-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the problem of maximal regularity for the semilinear non-autonomous evolution equations u'(t) + A(t)u(t) = F(t, u), t.e., u(0) = u(0). Here, the time-dependent operators A(t) are associated with (time dependent) sesquilinear forms on a Hilbert space H. We prove the maximal regularity result in temporally weighted L-2-spaces and other regularity properties for the solution of the previous problem under minimal regularity assumptions on the forms, the initial value u(0) and the inhomogeneous term F. Our results are motivated by boundary value problems.
引用
收藏
页码:539 / 547
页数:9
相关论文
共 50 条
  • [1] Maximal regularity for semilinear non-autonomous evolution equations in temporally weighted spaces
    Tebbani Hossni
    Achache Mahdi
    [J]. Arabian Journal of Mathematics, 2022, 11 : 539 - 547
  • [2] Maximal Lp-regularity for evolution equations governed by non-autonomous forms in weighted spaces
    Achache, Mahdi
    [J]. APPLICABLE ANALYSIS, 2024,
  • [3] Maximal regularity for non-autonomous evolution equations
    Haak, Bernhard H.
    Ouhabaz, El Maati
    [J]. MATHEMATISCHE ANNALEN, 2015, 363 (3-4) : 1117 - 1145
  • [4] Maximal regularity for non-autonomous evolution equations
    Bernhard H. Haak
    El Maati Ouhabaz
    [J]. Mathematische Annalen, 2015, 363 : 1117 - 1145
  • [5] On the maximal regularity for perturbed autonomous and non-autonomous evolution equations
    Ahmed Amansag
    Hamid Bounit
    Abderrahim Driouich
    Said Hadd
    [J]. Journal of Evolution Equations, 2020, 20 : 165 - 190
  • [6] Maximal regularity for non-autonomous stochastic evolution equations in UMD Banach spaces
    Tôn Việt Tạ
    Atsushi Yagi
    Yoshitaka Yamamoto
    [J]. Proceedings - Mathematical Sciences, 2017, 127 : 857 - 879
  • [7] On the maximal regularity for perturbed autonomous and non-autonomous evolution equations
    Amansag, Ahmed
    Bounit, Hamid
    Driouich, Abderrahim
    Hadd, Said
    [J]. JOURNAL OF EVOLUTION EQUATIONS, 2020, 20 (01) : 165 - 190
  • [8] MAXIMAL REGULARITY FOR NON-AUTONOMOUS CAUCHY PROBLEMS IN WEIGHTED SPACES
    Mahdi, Achache
    Hossni, Tebbani
    [J]. ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2020,
  • [9] Maximal regularity for non-autonomous stochastic evolution equations in UMD Banach spaces
    Ton Viet Ta
    Yagi, Atsushi
    Yamamoto, Yoshitaka
    [J]. PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2017, 127 (05): : 857 - 879
  • [10] Non-autonomous maximal regularity for fractional evolution equations
    Achache Mahdi
    [J]. Journal of Evolution Equations, 2022, 22