Non-autonomous maximal regularity in Hilbert spaces

被引:14
|
作者
Dier, Dominik [1 ]
Zacher, Rico [1 ]
机构
[1] Univ Ulm, Inst Appl Anal, D-89069 Ulm, Germany
关键词
Sesquilinear forms; Non-autonomous evolution equations; Maximal regularity; EVOLUTION-EQUATIONS; L-P; FORMS; SOBOLEV; BESOV;
D O I
10.1007/s00028-016-0343-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider non-autonomous evolutionary problems of the form u' (t) + A(t) u(t) = f (t), u(0) = u(0), on , where H is a Hilbert space. We do not assume that the domain of the operator A(t) is constant in time t, but that A(t) is associated with a sesquilinear form . Under sufficient time regularity of the forms , we prove well-posedness with maximal regularity in . Our regularity assumption is significantly weaker than those from previous results inasmuch as we only require a fractional Sobolev regularity with arbitrary small Sobolev index.
引用
收藏
页码:883 / 907
页数:25
相关论文
共 50 条
  • [21] Maximal regularity for second order non-autonomous Cauchy problems
    Batty, Charles J. K.
    Chill, Ralph
    Srivastava, Sachi
    STUDIA MATHEMATICA, 2008, 189 (03) : 205 - 223
  • [22] On non-autonomous maximal regularity for elliptic operators in divergence form
    Auscher, Pascal
    Egert, Moritz
    ARCHIV DER MATHEMATIK, 2016, 107 (03) : 271 - 284
  • [23] Maximal Regularity for Non-Autonomous Second Order Cauchy Problems
    Dier, Dominik
    Ouhabaz, El Maati
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2014, 78 (03) : 427 - 450
  • [24] Maximal Regularity for Non-autonomous Equations with Measurable Dependence on Time
    Chiara Gallarati
    Mark Veraar
    Potential Analysis, 2017, 46 : 527 - 567
  • [25] LP-maximal regularity for non-autonomous evolution equations
    Arendt, Wolfgang
    Chill, Ralph
    Fornaro, Simona
    Poupaud, Cesar
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2007, 237 (01) : 1 - 26
  • [26] MAXIMAL REGULARITY FOR EVOLUTION EQUATIONS GOVERNED BY NON-AUTONOMOUS FORMS
    Arendt, Wolfgang
    Dier, Dominik
    Laasri, Hafida
    Ouhabaz, El Maati
    ADVANCES IN DIFFERENTIAL EQUATIONS, 2014, 19 (11-12) : 1043 - 1066
  • [27] Non-autonomous right and left multiplicative perturbations and maximal regularity
    Achache, Mahdi
    Ouhabaz, El Maati
    STUDIA MATHEMATICA, 2018, 242 (01) : 1 - 29
  • [28] Maximal Regularity for Non-autonomous Equations with Measurable Dependence on Time
    Gallarati, Chiara
    Veraar, Mark
    POTENTIAL ANALYSIS, 2017, 46 (03) : 527 - 567
  • [29] Maximal Regularity for Non-Autonomous Second Order Cauchy Problems
    Dominik Dier
    El Maati Ouhabaz
    Integral Equations and Operator Theory, 2014, 78 : 427 - 450
  • [30] On non-autonomous maximal regularity for elliptic operators in divergence form
    Pascal Auscher
    Moritz Egert
    Archiv der Mathematik, 2016, 107 : 271 - 284