Parameter estimation in spatial econometric models with non-random missing data

被引:2
|
作者
Seya, Hajime [1 ]
Tomari, Masashi [2 ]
Uno, Shohei [1 ]
机构
[1] Kobe Univ, Grad Sch Engn Fac Engn, Kobe, Hyogo, Japan
[2] Nippon Koei Co Ltd, Osaka, Japan
关键词
Sample selection; spatial lag model (SLM); spatial autocorrelation; social interaction; Bayesian Markov chain Monte Carlo (MCMC); SAMPLE SELECTION;
D O I
10.1080/13504851.2020.1758618
中图分类号
F [经济];
学科分类号
02 ;
摘要
This study examines the problem of parameter estimation in spatial econometric/social interaction models with non-random missing outcome data. First, we construct a sample selection model considering spatial lag (autoregressive) dependence. Then, we suggest a parameter estimation method for this model by slightly modifying the Bayesian Markov chain Monte Carlo algorithm proposed in an existing study. A simple illustration indicates that the proposed parameter estimation method performs well overall if the spatial autocorrelation is moderate (spatial parameter equals 0.5 or less), even under a relatively high missing data ratio (around 40%).
引用
收藏
页码:440 / 446
页数:7
相关论文
共 50 条
  • [41] Revisiting estimation methods for spatial econometric interaction models
    Lukas Dargel
    [J]. Journal of Spatial Econometrics, 2021, 2 (1):
  • [42] Evaluation of Uplift Models with Non-Random Assignment Bias
    Rafla, Mina
    Voisine, Nicolas
    Cremilleux, Bruno
    [J]. ADVANCES IN INTELLIGENT DATA ANALYSIS XX, IDA 2022, 2022, 13205 : 251 - 263
  • [43] Using auxiliary data for parameter estimation with non-ignorably missing outcomes
    Ibrahim, JG
    Lipsitz, SR
    Horton, N
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C-APPLIED STATISTICS, 2001, 50 : 361 - 373
  • [44] Parameter Estimation with Missing Input/Output Data
    Fang, Huazhen
    Shi, Yang
    Wu, Jian
    [J]. 2009 AMERICAN CONTROL CONFERENCE, VOLS 1-9, 2009, : 5061 - 5066
  • [45] Parameter estimation in selected populations with missing data
    Yaguee-Utrilla, G.
    Garcia-Cortes, L. A.
    Silander, M.
    Varona, L.
    Altarriba, J.
    Moreno, C.
    [J]. JOURNAL OF ANIMAL BREEDING AND GENETICS, 2009, 126 (02) : 103 - 109
  • [46] A Shared Spatial Model for Multivariate Extreme-Valued Binary Data with Non-Random Missingness
    Zhao, Xiaoyue
    Zhang, Lin
    Bandyopadhyay, Dipankar
    [J]. SANKHYA-SERIES B-APPLIED AND INTERDISCIPLINARY STATISTICS, 2021, 83 (02): : 374 - 396
  • [47] Asymptotic Normality of Nonparametric Kernel Regression Estimation for Missing at Random Functional Spatial Data
    Alshahrani, Fatimah
    Almanjahie, Ibrahim M.
    Benchikh, Tawfik
    Fetitah, Omar
    Attouch, Mohammed Kadi
    [J]. JOURNAL OF MATHEMATICS, 2023, 2023
  • [48] A Shared Spatial Model for Multivariate Extreme-Valued Binary Data with Non-Random Missingness
    Zhao X.
    Zhang L.
    Bandyopadhyay D.
    [J]. Sankhya B, 2021, 83 (2) : 374 - 396
  • [49] Estimation in semiparametric models with missing data
    Chen, Song Xi
    Van Keilegom, Ingrid
    [J]. ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2013, 65 (04) : 785 - 805
  • [50] Maximum likelihood estimation of missing data probability for nonmonotone missing at random data
    Zhao, Yang
    [J]. STATISTICAL METHODS AND APPLICATIONS, 2023, 32 (01): : 197 - 209