Maximum likelihood estimation of missing data probability for nonmonotone missing at random data

被引:0
|
作者
Zhao, Yang [1 ]
机构
[1] Univ Regina, Math & Stat, Coll West 307-14,3737 Wascana Pkwy, Regina, SK S4S 0A2, Canada
来源
STATISTICAL METHODS AND APPLICATIONS | 2023年 / 32卷 / 01期
关键词
Curse of dimensionality; Missing at random; Missing data mechanism; Model selection; Nonmonotone missing data patterns; Semiparametric likelihood; MODELS;
D O I
10.1007/s10260-022-00650-5
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In general, statistical analysis with missing data requires specification of a model for the missing data probability and/or the covariate distribution. For nonmonotone missing data patterns, modeling and practical estimation of the missing data probability are very challenging. Recently a semiparametric likelihood model was developed to estimate parametric regression models for the missing data mechanism based on all the observed data, which can deal with arbitrary nonmonotone missing data patterns. However, due to the curse of dimensionality in the likelihood-based models, this method becomes impractical if the number of variables increases. This research generalizes the semiparametric likelihood model such that it can deal with any number of variables with arbitrary nonmonotone missing data patterns. It further introduces a semiparametric estimator of the missing data probability for the partially observed data, which can be used to assess the model fit. An EM algorithm with closed form expressions at each step are used to compute the estimates. Simulation studies in various settings indicate that the performance of the new method is acceptable for practical implementation. The missing data mechanism of a case-control study of hip fractures among male veterans is analyzed to illustrate the method.
引用
收藏
页码:197 / 209
页数:13
相关论文
共 50 条
  • [1] Maximum likelihood estimation of missing data probability for nonmonotone missing at random data
    Yang Zhao
    [J]. Statistical Methods & Applications, 2023, 32 : 197 - 209
  • [2] Semiparametric maximum likelihood estimation with data missing not at random
    Morikawa, Kosuke
    Kim, Jae Kwang
    Kano, Yutaka
    [J]. CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2017, 45 (04): : 393 - 409
  • [3] On Inverse Probability Weighting for Nonmonotone Missing at Random Data
    Sun, BaoLuo
    Tchetgen, Eric J. Tchetgen
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2018, 113 (521) : 369 - 379
  • [4] MISSING DATA AND MAXIMUM-LIKELIHOOD ESTIMATION
    HSIAO, C
    [J]. ECONOMICS LETTERS, 1980, 6 (03) : 249 - 253
  • [5] Inverse-Probability-Weighted Estimation for Monotone and Nonmonotone Missing Data
    Sun, BaoLuo
    Perkins, Neil J.
    Cole, Stephen R.
    Harel, Ofer
    Mitchell, Emily M.
    Schisterman, Enrique F.
    Tchetgen, Eric J. Tchetgen
    [J]. AMERICAN JOURNAL OF EPIDEMIOLOGY, 2018, 187 (03) : 585 - 591
  • [6] Maximum likelihood estimation of linear SISO models subject to missing output data and missing input data
    Wallin, Ragnar
    Hansson, Anders
    [J]. INTERNATIONAL JOURNAL OF CONTROL, 2014, 87 (11) : 2354 - 2364
  • [7] Marginal maximum likelihood estimation of SAR models with missing data
    Suesse, Thomas
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2018, 120 : 98 - 110
  • [8] Maximum likelihood estimation for dynamic factor models with missing data
    Jungbacker, B.
    Koopman, S. J.
    van der Wel, M.
    [J]. JOURNAL OF ECONOMIC DYNAMICS & CONTROL, 2011, 35 (08): : 1358 - 1368
  • [9] Consequences of Model Misspecification for Maximum Likelihood Estimation with Missing Data
    Golden, Richard M.
    Henley, Steven S.
    White, Halbert
    Kashner, T. Michael
    [J]. ECONOMETRICS, 2019, 7 (03)
  • [10] Local quasi-likelihood estimation with data missing at random
    Chen, Jianwei
    Fan, Jianqing
    Li, Kim-Hung
    Zhou, Haibo
    [J]. STATISTICA SINICA, 2006, 16 (04) : 1071 - 1100