Evolving text classification rules with genetic programming

被引:5
|
作者
Hirsch, L [1 ]
Saeedi, M
Hirsch, R
机构
[1] Royal Holloway Univ London, Sch Management, Egham TW20 0EX, Surrey, England
[2] UCL, Dept Comp Sci, London, England
关键词
D O I
10.1080/08839510590967307
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We describe a novel method for using genetic programming to create compact classification rules using combinations of N-grams ( character strings). Genetic programs acquire fitness by producing rules that are effective classifiers in terms of precision and recall when evaluated against a set of training documents. We describe a set of functions and terminals and provide results from a classification task using the Reuters 21578 dataset. We also suggest that the rules may have a number of other uses beyond classification and provide a basis for text mining applications.
引用
收藏
页码:659 / 676
页数:18
相关论文
共 50 条
  • [41] Text classification with evolving label-sets
    Godbole, S
    Ramakrishnan, G
    Sarawagi, S
    [J]. FIFTH IEEE INTERNATIONAL CONFERENCE ON DATA MINING, PROCEEDINGS, 2005, : 629 - 632
  • [42] Evolving Lucene Search Queries for Text Classification
    Hirsch, Laurence
    Hirsch, Robin
    Saeedi, Masoud
    [J]. GECCO 2007: GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, VOL 1 AND 2, 2007, : 1604 - +
  • [43] Evolving High-Speed, Easy-to-Understand Network Intrusion Detection Rules with Genetic Programming
    Orfila, Agustin
    Estevez-Tapiador, Juan M.
    Ribagorda, Arturo
    [J]. APPLICATIONS OF EVOLUTIONARY COMPUTING, PROCEEDINGS, 2009, 5484 : 93 - 98
  • [44] Feature Selection for Evolving Many-Objective Job Shop Scheduling Dispatching Rules with Genetic Programming
    Masood, Atiya
    Chen, Gang
    Zhang, Mengjie
    [J]. 2021 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC 2021), 2021, : 644 - 651
  • [45] Discovering comprehensible classification rules using Genetic Programming: a case study in a medical domain
    Bojarczuk, CC
    Lopes, HS
    Freitas, AA
    [J]. GECCO-99: PROCEEDINGS OF THE GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, 1999, : 953 - 958
  • [46] Creating deep neural networks for text classification tasks using grammar genetic programming
    Magalhaes, Dimmy
    Lima, Ricardo H. R.
    Pozo, Aurora
    [J]. APPLIED SOFT COMPUTING, 2023, 135
  • [47] Contextual genetic algorithms: Evolving developmental rules
    Rocha, LM
    [J]. ADVANCES IN ARTIFICIAL LIFE, 1995, 929 : 368 - 382
  • [48] Evolving Profitable Trading Rules with Genetic Algorithms
    Shin, Kyung-shik
    Kim, Kyoung-jae
    [J]. INFORMATION-AN INTERNATIONAL INTERDISCIPLINARY JOURNAL, 2012, 15 (08): : 3313 - 3321
  • [49] Evolving Temporal Association Rules with Genetic Algorithms
    Matthews, Stephen G.
    Gongora, Mario A.
    Hopgood, Adrian A.
    [J]. RESEARCH AND DEVELOPMENT IN INTELLIGENT SYSTEMS XXVII: INCORPORATING APPLICATIONS AND INNOVATIONS IN INTELLIGENT SYSTEMS XVIII, 2011, : 107 - 120
  • [50] A Genetic Programming Approach for Evolving Variable Selectors in Constraint Programming
    Nguyen, Su
    Thiruvady, Dhananjay
    Zhang, Mengjie
    Tan, Kay Chen
    [J]. IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2021, 25 (03) : 492 - 507