Evolving text classification rules with genetic programming

被引:5
|
作者
Hirsch, L [1 ]
Saeedi, M
Hirsch, R
机构
[1] Royal Holloway Univ London, Sch Management, Egham TW20 0EX, Surrey, England
[2] UCL, Dept Comp Sci, London, England
关键词
D O I
10.1080/08839510590967307
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We describe a novel method for using genetic programming to create compact classification rules using combinations of N-grams ( character strings). Genetic programs acquire fitness by producing rules that are effective classifiers in terms of precision and recall when evaluated against a set of training documents. We describe a set of functions and terminals and provide results from a classification task using the Reuters 21578 dataset. We also suggest that the rules may have a number of other uses beyond classification and provide a basis for text mining applications.
引用
收藏
页码:659 / 676
页数:18
相关论文
共 50 条
  • [21] An Efficient Feature Selection Algorithm for Evolving Job Shop Scheduling Rules With Genetic Programming
    Mei, Yi
    Nguyen, Su
    Xue, Bing
    Zhang, Mengjie
    IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, 2017, 1 (05): : 339 - 353
  • [22] Evolving Rules for Action Selection in Automated Testing via Genetic Programming - A First Approach
    Esparcia-Alcazar, Anna I.
    Almenar, Francisco
    Rueda, Urko
    Vos, Tanja E. J.
    APPLICATIONS OF EVOLUTIONARY COMPUTATION (EVOAPPLICATIONS 2017), PT II, 2017, 10200 : 82 - 95
  • [23] Term-weighting learning via genetic programming for text classification
    Jair Escalante, Hugo
    Garcia-Limon, Mauricio A.
    Morales-Reyes, Alicia
    Graff, Mario
    Montes-y-Gomez, Manuel
    Morales, Eduardo F.
    Martinez-Carranza, Jose
    KNOWLEDGE-BASED SYSTEMS, 2015, 83 : 176 - 189
  • [24] Term-weighting learning via genetic programming for text classification
    Escalante, Hugo Jair
    García-Limón, Mauricio A.
    Morales-Reyes, Alicia
    Graff, Mario
    Montes-y-Gómez, Manuel
    Morales, Eduardo F.
    Martínez-Carranza, José
    Knowledge-Based Systems, 2015, 83 : 176 - 189
  • [25] Evolving Ensembles in Multi-objective Genetic Programming for Classification with Unbalanced Data
    Bhowan, Urvesh
    Johnston, Mark
    Zhang, Mengjie
    GECCO-2011: PROCEEDINGS OF THE 13TH ANNUAL GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, 2011, : 1331 - 1338
  • [26] Evolving Interpretable Classification Models via Readability-Enhanced Genetic Programming
    de Souza Abreu, Joao Victor T.
    Martins, Denis Mayr Lima
    de Lima Neto, Fernando Buarque
    2022 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (SSCI), 2022, : 1691 - 1697
  • [27] Evolving fuzzy rules for pattern classification
    Mallinson, H
    Bentley, P
    COMPUTATIONAL INTELLIGENCE FOR MODELLING, CONTROL & AUTOMATION - EVOLUTIONARY COMPUTATION & FUZZY LOGIC FOR INTELLIGENT CONTROL, KNOWLEDGE ACQUISITION & INFORMATION RETRIEVAL, 1999, 55 : 184 - 191
  • [28] Evolving ensembles using multi-objective genetic programming for imbalanced classification
    Zhang, Liang
    Wang, Kefan
    Xu, Luyuan
    Sheng, Wenjia
    Kang, Qi
    KNOWLEDGE-BASED SYSTEMS, 2022, 255
  • [29] Evolving Accurate and Comprehensible Classification Rules
    Sonstrod, Cecilia
    Johansson, Ulf
    Konig, Rikard
    2011 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2011, : 1436 - 1443
  • [30] Genetic Network Programming with Rules
    Ye, Fengming
    Mabu, Shigo
    Shimada, Kaoru
    Hirasawa, Kotaro
    2008 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-8, 2008, : 413 - 418