Evolving text classification rules with genetic programming

被引:5
|
作者
Hirsch, L [1 ]
Saeedi, M
Hirsch, R
机构
[1] Royal Holloway Univ London, Sch Management, Egham TW20 0EX, Surrey, England
[2] UCL, Dept Comp Sci, London, England
关键词
D O I
10.1080/08839510590967307
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We describe a novel method for using genetic programming to create compact classification rules using combinations of N-grams ( character strings). Genetic programs acquire fitness by producing rules that are effective classifiers in terms of precision and recall when evaluated against a set of training documents. We describe a set of functions and terminals and provide results from a classification task using the Reuters 21578 dataset. We also suggest that the rules may have a number of other uses beyond classification and provide a basis for text mining applications.
引用
收藏
页码:659 / 676
页数:18
相关论文
共 50 条
  • [1] Evolving text classifiers with genetic programming
    Hirsch, L
    Saeedi, M
    Hirsch, R
    [J]. GENETIC PROGRAMMING, PROCEEDINGS, 2004, 3003 : 309 - 317
  • [2] Evolving accurate and compact classification rules with gene expression programming
    Zhou, C
    Xiao, WM
    Tirpak, TM
    Nelson, PC
    [J]. IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2003, 7 (06) : 519 - 531
  • [3] Evolving Dispatching Rules for Dynamic Vehicle Routing with Genetic Programming
    Jakobovic, Domagoj
    Durasevic, Marko
    Brkic, Karla
    Fosin, Juraj
    Caric, Tonci
    Davidovic, Davor
    [J]. ALGORITHMS, 2023, 16 (06)
  • [4] Econometric Genetic Programming in Binary Classification: Evolving Logistic Regressions Through Genetic Programming
    Farias Novaes, Andre Luiz
    Tanscheit, Ricardo
    Dias, Douglas Mota
    [J]. PROGRESS IN ARTIFICIAL INTELLIGENCE (EPIA 2017), 2017, 10423 : 382 - 394
  • [5] Evolving TSK fuzzy rules for classification tasks by genetic algorithms
    Espíndola, RP
    Ebecken, NFF
    [J]. DATA MINING II, 2000, 2 : 467 - 476
  • [6] Feature Selection in Evolving Job Shop Dispatching Rules with Genetic Programming
    Mei, Yi
    Zhang, Mengjie
    Su Nyugen
    [J]. GECCO'16: PROCEEDINGS OF THE 2016 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, 2016, : 365 - 372
  • [7] Evolving data classification programs using genetic parallel programming
    Cheang, SM
    Lee, KH
    Leung, KS
    [J]. CEC: 2003 CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-4, PROCEEDINGS, 2003, : 248 - 255
  • [8] Discovering Fuzzy Classification Rules using Genetic Network Programming
    Taboada, Karla
    Gonzales, Eloy
    Shimada, Kaoru
    Mabu, Shingo
    Hirasawa, Kotaro
    [J]. 2008 PROCEEDINGS OF SICE ANNUAL CONFERENCE, VOLS 1-7, 2008, : 1723 - 1728
  • [9] Mining multiple comprehensible classification rules using genetic programming
    Tan, KC
    Tay, A
    Lee, TH
    Heng, CM
    [J]. CEC'02: PROCEEDINGS OF THE 2002 CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1 AND 2, 2002, : 1302 - 1307
  • [10] Evolving priority rules for resource constrained project scheduling problem with genetic programming
    Dumic, Mateja
    Sisejkovic, Dominik
    Coric, Rebeka
    Jakobovic, Domagoj
    [J]. FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2018, 86 : 211 - 221