Thermal expansion of anatase and rutile between 300 and 575 K using synchrotron powder X-ray diffraction

被引:109
|
作者
Hummer, D. R. [1 ]
Heaney, P. J. [1 ]
Post, J. E. [2 ]
机构
[1] Penn State Univ, Dept Geosci, University Pk, PA 16802 USA
[2] Smithsonian Inst, Dept Mineral Sci, Washington, DC 20560 USA
关键词
anatase; rutile; thermal expansion; synchrotron; powder diffraction;
D O I
10.1154/1.2790965
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
High-precision unit-cell parameters for the TiO2 polymorphs anatase and rutile at temperatures between 300 and 575 K have been determined using Rietveld analysis of synchrotron powder XRD data. Polynomial models were used to express the tetragonal unit-cell parameters as a function of absolute temperature, with a (anatase)=1.759 37 x 10(-8) x T-2+6.418 16 x 10(-6) x T+3.779 84, c (anatase)=6.6545 x 10(-8) x T-2+4.0464 x 10(-5) x T+9.4910, V (anatase)=2.237 58 x 10(-6) x T-2 + 1.027 77 x 10(-3) x T+ 135.602, a (rutile)=-6.636 42 x 10(-11) x T-3+ 1.005 01 x 10(-7) x T-2-1.009 93 x 10(-5) x T+4.586 34, c (rutile)=-4.115 50 x 10(-1)1 x T-3+6.405 94 x 10(-8) x T-2+4.675 61 x 10(-7)T +2.95181, and V (rutile)=-2.7790 x 10(-9) x T-3+4.2386 x 10(-6) x T-2-3.3551 x 10(-4) x T+62.100. The polynomial expressions were used to calculate linear (alpha) and volume (beta) thermal expansion coefficients of anatase and rutile between 300 and 575 K. At 298.15 K, these values were alpha(a) =4.46943 x 10(-6) K-1, alpha(c)=8.4283 x 10(-6) K-1, and beta=17.3542 x 10(-6) K-1 for anatase, and alpha(a) =6.99953 x 10(-6) K-1, alpha(c)=9.36625 x 10(-6) K-1, and beta=28.680 x 10(-6) K-1 for rutile. (C) 2007 International Centre for Diffraction Data.
引用
收藏
页码:352 / 357
页数:6
相关论文
共 50 条
  • [41] The characterization of historic mortars: A comparison between powder diffraction and synchrotron radiation based X-ray absorption and X-ray fluorescence spectroscopy
    Hormes, J.
    Diekamp, A.
    Klysubun, W.
    Bovenkamp, G. -L.
    Boerste, N.
    MICROCHEMICAL JOURNAL, 2016, 125 : 190 - 195
  • [42] High-pressure study of FeS, between 20 and 120 GPa, using synchrotron X-ray powder diffraction
    Ono, Shigeaki
    Kikegawa, Takumi
    AMERICAN MINERALOGIST, 2006, 91 (11-12) : 1941 - 1944
  • [43] Thermal expansion measurements under high pressure using X-ray diffraction
    Wang, Y.
    Uchida, T.
    THERMAL CONDUCTIVITY 27: THERMAL EXPANSION 15, 2005, 27 : 538 - 553
  • [44] Structural characterization of SrLaMnRuO6 by synchrotron X-ray powder diffraction and X-ray absorption spectroscopy
    Bashir, Javaid
    Shaheen, Rubina
    Khan, Muhammad Nasir
    SOLID STATE SCIENCES, 2008, 10 (05) : 638 - 644
  • [45] IONICITY OF CDO BY X-RAY POWDER DIFFRACTION AT 80 K
    RANTAVUORI, E
    LINKOAHO, M
    KUOPPALA, R
    PHYSICA SCRIPTA, 1977, 16 (3-4): : 161 - 162
  • [46] Determination of thermal expansion of KCal3 using in-situ high temperature powder X-ray diffraction
    Lindsey, Adam C.
    Loyd, Matthew
    Patel, Maulik K.
    Rawl, Ryan
    Zhou, Haidong
    Koschan, Merry
    Melcher, Charles L.
    Zhuravleva, Mariya
    MATERIALS CHEMISTRY AND PHYSICS, 2018, 212 : 161 - 166
  • [47] An examination of the thermal expansion of urea using high-resolution variable-temperature X-ray powder diffraction
    Hammond, R
    Pencheva, K
    Roberts, KJ
    Mougin, P
    Wilkinson, D
    JOURNAL OF APPLIED CRYSTALLOGRAPHY, 2005, 38 : 1038 - 1039
  • [48] TEM Investigation of Aerinite, Compared with Synchrotron and X-Ray Powder Diffraction Data
    Nihtianova, D.
    Kolb, U.
    Li, Jixue
    Queralt, I.
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2004, 60 : S44 - S44
  • [49] DATA COLLECTION, ANALYSIS AND ACCURACY IN SYNCHROTRON X-RAY POWDER DIFFRACTION.
    Cox, D. E.
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 1996, 52 : C393 - C393
  • [50] Simultaneous structure refinement of neutron, synchrotron and X-ray powder diffraction patterns
    Maichle, J.K.
    Ihringer, J.
    Prandl, W.
    Journal of Applied Crystallography, 1988, 21 (01): : 22 - 28