Thermal expansion of anatase and rutile between 300 and 575 K using synchrotron powder X-ray diffraction

被引:109
|
作者
Hummer, D. R. [1 ]
Heaney, P. J. [1 ]
Post, J. E. [2 ]
机构
[1] Penn State Univ, Dept Geosci, University Pk, PA 16802 USA
[2] Smithsonian Inst, Dept Mineral Sci, Washington, DC 20560 USA
关键词
anatase; rutile; thermal expansion; synchrotron; powder diffraction;
D O I
10.1154/1.2790965
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
High-precision unit-cell parameters for the TiO2 polymorphs anatase and rutile at temperatures between 300 and 575 K have been determined using Rietveld analysis of synchrotron powder XRD data. Polynomial models were used to express the tetragonal unit-cell parameters as a function of absolute temperature, with a (anatase)=1.759 37 x 10(-8) x T-2+6.418 16 x 10(-6) x T+3.779 84, c (anatase)=6.6545 x 10(-8) x T-2+4.0464 x 10(-5) x T+9.4910, V (anatase)=2.237 58 x 10(-6) x T-2 + 1.027 77 x 10(-3) x T+ 135.602, a (rutile)=-6.636 42 x 10(-11) x T-3+ 1.005 01 x 10(-7) x T-2-1.009 93 x 10(-5) x T+4.586 34, c (rutile)=-4.115 50 x 10(-1)1 x T-3+6.405 94 x 10(-8) x T-2+4.675 61 x 10(-7)T +2.95181, and V (rutile)=-2.7790 x 10(-9) x T-3+4.2386 x 10(-6) x T-2-3.3551 x 10(-4) x T+62.100. The polynomial expressions were used to calculate linear (alpha) and volume (beta) thermal expansion coefficients of anatase and rutile between 300 and 575 K. At 298.15 K, these values were alpha(a) =4.46943 x 10(-6) K-1, alpha(c)=8.4283 x 10(-6) K-1, and beta=17.3542 x 10(-6) K-1 for anatase, and alpha(a) =6.99953 x 10(-6) K-1, alpha(c)=9.36625 x 10(-6) K-1, and beta=28.680 x 10(-6) K-1 for rutile. (C) 2007 International Centre for Diffraction Data.
引用
收藏
页码:352 / 357
页数:6
相关论文
共 50 条
  • [31] Synchrotron x-ray powder diffraction studies in pulsed magnetic fields
    Frings, P.
    Vanacken, J.
    Detlefs, C.
    Duc, F.
    Lorenzo, J. E.
    Nardone, M.
    Billette, J.
    Zitouni, A.
    Bras, W.
    Rikken, G. L. J. A.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2006, 77 (06):
  • [32] Microstructural view of anatase to rutile phase transformation examined by in-situ high-temperature X-ray powder diffraction
    Karunadasa, Kohobhange S. P.
    Manoratne, C. H.
    JOURNAL OF SOLID STATE CHEMISTRY, 2022, 314
  • [33] Studies of monolayers using synchrotron X-ray diffraction
    Department of Physics and Astronomy, Northwestern University, Evanston, IL 60208-3112, United States
    Curr. Opin. Solid State Mater. Sci., 5 (557-562):
  • [34] Studies of monolayers using synchrotron X-ray diffraction
    Dutta, P
    CURRENT OPINION IN SOLID STATE & MATERIALS SCIENCE, 1997, 2 (05): : 557 - 562
  • [35] X-ray diffraction microtomography using synchrotron radiation
    Barroso, RC
    Lopes, RT
    de Jesus, EFO
    Oliveira, LF
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2001, 471 (1-2): : 75 - 79
  • [36] Elastic modulus in the crystalline region and the thermal expansion coefficients of α-chitin determined using synchrotron radiated X-ray diffraction
    Ogawa, Yu
    Hori, Ritsuko
    Kim, Ung-Jin
    Wada, Masahisa
    CARBOHYDRATE POLYMERS, 2011, 83 (03) : 1213 - 1217
  • [37] Laboratory parallel-beam transmission X-ray powder diffraction investigation of the thermal behavior of calcite: comparison with X-ray single-crystal and synchrotron powder diffraction data
    Ballirano, Paolo
    PERIODICO DI MINERALOGIA, 2011, 80 (01): : 123 - 134
  • [38] Thermal expansion of kyanite at ambient pressure:An X-ray powder diffraction study up to 1000℃
    Michael E.Fleet
    Geoscience Frontiers, 2010, 1 (01) : 91 - 97
  • [39] Differential Thermal Expansion and Laboratory Capillary X-ray Powder Diffraction: Progress, Practicalities and Performance
    Fernandes, Philippe
    Florence, Alastair J.
    Shankland, Norman
    Kennedy, Alan R.
    David, Bill
    Shankland, Kenneth
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2005, 61 : C37 - C37
  • [40] Thermal expansion of kyanite at ambient pressure:An X-ray powder diffraction study up to 1000℃
    Michael E.Fleet
    Geoscience Frontiers, 2010, (01) : 91 - 97