Thermal expansion of anatase and rutile between 300 and 575 K using synchrotron powder X-ray diffraction

被引:109
|
作者
Hummer, D. R. [1 ]
Heaney, P. J. [1 ]
Post, J. E. [2 ]
机构
[1] Penn State Univ, Dept Geosci, University Pk, PA 16802 USA
[2] Smithsonian Inst, Dept Mineral Sci, Washington, DC 20560 USA
关键词
anatase; rutile; thermal expansion; synchrotron; powder diffraction;
D O I
10.1154/1.2790965
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
High-precision unit-cell parameters for the TiO2 polymorphs anatase and rutile at temperatures between 300 and 575 K have been determined using Rietveld analysis of synchrotron powder XRD data. Polynomial models were used to express the tetragonal unit-cell parameters as a function of absolute temperature, with a (anatase)=1.759 37 x 10(-8) x T-2+6.418 16 x 10(-6) x T+3.779 84, c (anatase)=6.6545 x 10(-8) x T-2+4.0464 x 10(-5) x T+9.4910, V (anatase)=2.237 58 x 10(-6) x T-2 + 1.027 77 x 10(-3) x T+ 135.602, a (rutile)=-6.636 42 x 10(-11) x T-3+ 1.005 01 x 10(-7) x T-2-1.009 93 x 10(-5) x T+4.586 34, c (rutile)=-4.115 50 x 10(-1)1 x T-3+6.405 94 x 10(-8) x T-2+4.675 61 x 10(-7)T +2.95181, and V (rutile)=-2.7790 x 10(-9) x T-3+4.2386 x 10(-6) x T-2-3.3551 x 10(-4) x T+62.100. The polynomial expressions were used to calculate linear (alpha) and volume (beta) thermal expansion coefficients of anatase and rutile between 300 and 575 K. At 298.15 K, these values were alpha(a) =4.46943 x 10(-6) K-1, alpha(c)=8.4283 x 10(-6) K-1, and beta=17.3542 x 10(-6) K-1 for anatase, and alpha(a) =6.99953 x 10(-6) K-1, alpha(c)=9.36625 x 10(-6) K-1, and beta=28.680 x 10(-6) K-1 for rutile. (C) 2007 International Centre for Diffraction Data.
引用
收藏
页码:352 / 357
页数:6
相关论文
共 50 条
  • [1] Thermal expansion of coesite determined by synchrotron powder X-ray diffraction
    Kulik, Eleonora
    Murzin, Vadim
    Kawaguchi, Shogo
    Nishiyama, Norimasa
    Katsura, Tomoo
    PHYSICS AND CHEMISTRY OF MINERALS, 2018, 45 (09) : 873 - 881
  • [2] Thermal expansion of coesite determined by synchrotron powder X-ray diffraction
    Eleonora Kulik
    Vadim Murzin
    Shogo Kawaguchi
    Norimasa Nishiyama
    Tomoo Katsura
    Physics and Chemistry of Minerals, 2018, 45 : 873 - 881
  • [3] Thermal expansion of natural mantle spinel using in situ synchrotron X-ray powder diffraction
    Yamamoto, J.
    Yoshino, T.
    Yamazaki, D.
    Higo, Y.
    Tange, Y.
    Torimoto, J.
    JOURNAL OF MATERIALS SCIENCE, 2019, 54 (01) : 139 - 148
  • [4] Thermal expansion of natural mantle spinel using in situ synchrotron X-ray powder diffraction
    J. Yamamoto
    T. Yoshino
    D. Yamazaki
    Y. Higo
    Y. Tange
    J. Torimoto
    Journal of Materials Science, 2019, 54 : 139 - 148
  • [5] X-ray Diffraction Imaging of Anatase and Rutile
    Sakurai, Kenji
    Mizusawa, Mari
    ANALYTICAL CHEMISTRY, 2010, 82 (09) : 3519 - 3522
  • [6] Battery research using synchrotron powder X-ray diffraction
    Gu, Q.
    Brand, H.
    Kimpton, J.
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2014, 70 : C951 - C951
  • [7] Dehydration dynamics of stilbite using synchrotron X-ray powder diffraction
    Cruciani, G
    Artioli, G
    Gualtieri, A
    Stahl, K
    Hanson, JC
    AMERICAN MINERALOGIST, 1997, 82 (7-8) : 729 - 739
  • [8] Dehydration dynamics of stilbite using synchrotron X-ray powder diffraction
    Cruciani, Giuseppe
    Artioli, Gilberto
    Gualtieri, Alessandro
    Stáhl, Kenny
    Hanson, Jonathan C.
    American Mineralogist, 82 (7-8): : 729 - 739
  • [9] In situ high temperature X-ray diffraction study of anatase and rutile
    Wang Ling
    Wang He-Jin
    Li Ting
    ACTA PHYSICA SINICA, 2013, 62 (14)