Approximate Bayesian Computation via Classification

被引:0
|
作者
Wang, Yuexi [1 ]
Kaji, Tetsuya [1 ]
Rockova, Veronika [1 ]
机构
[1] Univ Chicago, Booth Sch Business, Chicago, IL 60637 USA
基金
美国国家科学基金会;
关键词
Approximate Bayesian Computation; Classification; Likelihood-free Inference; Kullback-Leibler Divergence; Posterior Concentration; DIVERGENCE ESTIMATION; INFERENCE;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Approximate Bayesian Computation (ABC) enables statistical inference in simulator-based models whose likelihoods are difficult to calculate but easy to simulate from. ABC constructs a kernel-type approximation to the posterior distribution through an accept/reject mechanism which compares summary statistics of real and simulated data. To obviate the need for summary statistics, we directly compare empirical distributions with a Kullback-Leibler (KL) divergence estimator obtained via contrastive learning. In particular, we blend flexible machine learning classifiers within ABC to automate fake/real data comparisons. We consider the traditional accept/reject kernel as well as an exponential weighting scheme which does not require the ABC acceptance threshold. Our theoretical results show that the rate at which our ABC posterior distributions concentrate around the true parameter depends on the estimation error of the classifier. We derive limiting posterior shape results and find that, with a properly scaled exponential kernel, asymptotic normality holds. We demonstrate the usefulness of our approach on simulated examples as well as real data in the context of stock volatility estimation.
引用
收藏
页数:49
相关论文
共 50 条
  • [41] The rate of convergence for approximate Bayesian computation
    Barber, Stuart
    Voss, Jochen
    Webster, Mark
    ELECTRONIC JOURNAL OF STATISTICS, 2015, 9 (01): : 80 - 105
  • [42] Asymptotic properties of approximate Bayesian computation
    Frazier, D. T.
    Martin, G. M.
    Robert, C. P.
    Rousseau, J.
    BIOMETRIKA, 2018, 105 (03) : 593 - 607
  • [43] Approximate Bayesian computation with differential evolution
    Turner, Brandon M.
    Sederberg, Per B.
    JOURNAL OF MATHEMATICAL PSYCHOLOGY, 2012, 56 (05) : 375 - 385
  • [44] DIFFUSION FILTRATION WITH APPROXIMATE BAYESIAN COMPUTATION
    Dedecius, Kamil
    Djuric, Petar M.
    2015 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING (ICASSP), 2015, : 3207 - 3211
  • [45] HYPERPARAMETER OPTIMIZATION FOR APPROXIMATE BAYESIAN COMPUTATION
    Singh, Prashant
    Hellander, Andreas
    2018 WINTER SIMULATION CONFERENCE (WSC), 2018, : 1718 - 1729
  • [46] Approximate Bayesian Computation (ABC) in practice
    Csillery, Katalin
    Blum, Michael G. B.
    Gaggiotti, Oscar E.
    Francois, Olivier
    TRENDS IN ECOLOGY & EVOLUTION, 2010, 25 (07) : 410 - 418
  • [47] Approximate Bayesian computation in population genetics
    Beaumont, MA
    Zhang, WY
    Balding, DJ
    GENETICS, 2002, 162 (04) : 2025 - 2035
  • [48] Approximate Bayesian computation with the Wasserstein distance
    Bernton, Espen
    Jacob, Pierre E.
    Gerber, Mathieu
    Robert, Christian P.
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2019, 81 (02) : 235 - 269
  • [49] Approximate Bayesian Computation: A Nonparametric Perspective
    Blum, Michael G. B.
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2010, 105 (491) : 1178 - 1187
  • [50] Approximate Bayesian computation with functional statistics
    Soubeyrand, Samuel
    Carpentier, Florence
    Guiton, Francois
    Klein, Etienne K.
    STATISTICAL APPLICATIONS IN GENETICS AND MOLECULAR BIOLOGY, 2013, 12 (01) : 17 - 37