Time-fractional diffusion equation with time dependent diffusion coefficient

被引:29
|
作者
Fa, KS [1 ]
Lenzi, EK [1 ]
机构
[1] Univ Estadual Maringa, Dept Fis, BR-87020900 Maringa, Parana, Brazil
来源
PHYSICAL REVIEW E | 2005年 / 72卷 / 01期
关键词
D O I
10.1103/PhysRevE.72.011107
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We consider the time-fractional diffusion equation with time dependent diffusion coefficient given by (0O(C)tW)-W-alpha(x,t)=D(alpha,gamma)t(gamma)[partial derivative W-2(x,t)/partial derivative x(2)], where O-0((C)t)alpha is the Caputo operator. We investigate its solutions in the infinite and the finite domains. The mean squared displacement and the mean first passage time are also considered. In particular, for alpha=0, the mean squared displacement is given by < x(2)>similar to t(gamma) and we verify that the mean first passage time is finite for superdiffusive regimes.
引用
收藏
页数:4
相关论文
共 50 条
  • [41] Uniqueness and numerical scheme for the Robin coefficient identification of the time-fractional diffusion equation
    Wang, Jun-Gang
    Ran, Yu-Hong
    Yuan, Zhan-Bin
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2018, 75 (11) : 4107 - 4114
  • [42] Numerical inversions for space-dependent diffusion coefficient in the time fractional diffusion equation
    Li, Gongsheng
    Gu, Wenjuan
    Jia, Xianzheng
    JOURNAL OF INVERSE AND ILL-POSED PROBLEMS, 2012, 20 (03): : 339 - 366
  • [43] Simultaneous inversion of time-dependent source term and fractional order for a time-fractional diffusion equation
    Ruan, Zhousheng
    Zhang, Sen
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2020, 368
  • [44] On the simultaneous reconstruction of the initial diffusion time and source term for the time-fractional diffusion equation
    Ruan, Zhousheng
    Chen, Zhenxing
    Luo, Min
    Zhang, Wen
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2023, 100 (11) : 2077 - 2093
  • [45] Determining a time-dependent coefficient in a time-fractional diffusion-wave equation with the Caputo derivative by an additional integral condition
    Wei, Ting
    Xian, Jun
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2022, 404
  • [46] Recovering source term of the time-fractional diffusion equation
    Partohaghighi, M.
    Akgul, Esra Karatas
    Weber, Gerhard-Wilhelm
    Yao, Guangming
    Akgul, Ali
    PRAMANA-JOURNAL OF PHYSICS, 2021, 95 (04):
  • [48] Boundary Integral Solution of the Time-Fractional Diffusion Equation
    J. Kemppainen
    K. Ruotsalainen
    Integral Equations and Operator Theory, 2009, 64 : 239 - 249
  • [49] Nonexistence results for a time-fractional biharmonic diffusion equation
    Jleli, Mohamed
    Samet, Bessem
    BOUNDARY VALUE PROBLEMS, 2024, 2024 (01):
  • [50] A MAXIMUM PRINCIPLE FOR TIME-FRACTIONAL DIFFUSION EQUATION WITH MEMORY
    Mambetov, S. A.
    JOURNAL OF MATHEMATICS MECHANICS AND COMPUTER SCIENCE, 2023, 120 (04): : 32 - 40