Time-fractional diffusion equation with time dependent diffusion coefficient

被引:29
|
作者
Fa, KS [1 ]
Lenzi, EK [1 ]
机构
[1] Univ Estadual Maringa, Dept Fis, BR-87020900 Maringa, Parana, Brazil
来源
PHYSICAL REVIEW E | 2005年 / 72卷 / 01期
关键词
D O I
10.1103/PhysRevE.72.011107
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We consider the time-fractional diffusion equation with time dependent diffusion coefficient given by (0O(C)tW)-W-alpha(x,t)=D(alpha,gamma)t(gamma)[partial derivative W-2(x,t)/partial derivative x(2)], where O-0((C)t)alpha is the Caputo operator. We investigate its solutions in the infinite and the finite domains. The mean squared displacement and the mean first passage time are also considered. In particular, for alpha=0, the mean squared displacement is given by < x(2)>similar to t(gamma) and we verify that the mean first passage time is finite for superdiffusive regimes.
引用
收藏
页数:4
相关论文
共 50 条
  • [31] Symmetry classification of time-fractional diffusion equation
    Naeem, I.
    Khan, M. D.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2017, 42 : 560 - 570
  • [32] On the maximum principle for a time-fractional diffusion equation
    Yuri Luchko
    Masahiro Yamamoto
    Fractional Calculus and Applied Analysis, 2017, 20 : 1131 - 1145
  • [33] A backward problem for the time-fractional diffusion equation
    Liu, J. J.
    Yamamoto, M.
    APPLICABLE ANALYSIS, 2010, 89 (11) : 1769 - 1788
  • [34] REGULARITY OF SOLUTIONS TO A TIME-FRACTIONAL DIFFUSION EQUATION
    McLean, William
    ANZIAM JOURNAL, 2010, 52 (02): : 123 - 138
  • [35] RATIONAL SOLUTIONS FOR THE TIME-FRACTIONAL DIFFUSION EQUATION
    Atkinson, Colin
    Osseiran, Adel
    SIAM JOURNAL ON APPLIED MATHEMATICS, 2011, 71 (01) : 92 - 106
  • [36] ON THE MAXIMUM PRINCIPLE FOR A TIME-FRACTIONAL DIFFUSION EQUATION
    Luchko, Yuri
    Yamamoto, Masahiro
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2017, 20 (05) : 1131 - 1145
  • [37] A two-dimensional diffusion coefficient determination problem for the time-fractional equation
    Durdiev, Durdimurod K.
    Rahmonov, Askar A.
    Bozorov, Zavqiddin R.
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (13) : 10753 - 10761
  • [38] Identify the Robin coefficient in an inhomogeneous time-fractional diffusion-wave equation
    Shi, Chengxin
    Cheng, Hao
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2023, 434
  • [39] A local discontinuous Galerkin method for time-fractional diffusion equation with discontinuous coefficient
    Huang, Chaobao
    An, Na
    Yu, Xijun
    APPLIED NUMERICAL MATHEMATICS, 2020, 151 : 367 - 379
  • [40] AN INVERSE TIME-DEPENDENT SOURCE PROBLEM FOR A TIME-FRACTIONAL DIFFUSION EQUATION WITH NONLOCAL
    Mihoubi, Farid
    Nouiri, Brahim
    MISKOLC MATHEMATICAL NOTES, 2024, 25 (02)