Parameter stability and semiparametric inference in time varying auto-regressive conditional heteroscedasticity models

被引:12
|
作者
Truquet, Lionel [1 ,2 ]
机构
[1] Univ Rennes, Bruz, France
[2] Ecole Natl Stat & Anal & Informat, Campus Ker Lann,Rue Blaise Pascal,BP 37203, F-35172 Bruz, France
关键词
Auto-regressive conditional heteroscedasticity processes; Kernel smoothing; Locally stationary time series; Semiparametric inference; SERIES; NONSTATIONARITIES;
D O I
10.1111/rssb.12221
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We develop a complete methodology for detecting time varying or non-time-varying parameters in auto-regressive conditional heteroscedasticity (ARCH) processes. For this, we estimate and test various semiparametric versions of time varying ARCH models which include two well-known non-stationary ARCH-type models introduced in the econometrics literature. Using kernel estimation, we show that non-time-varying parameters can be estimated at the usual parametric rate of convergence and, for Gaussian noise, we construct estimates that are asymptotically efficient in a semiparametric sense. Then we introduce two statistical tests which can be used for detecting non-time-varying parameters or for testing the second-order dynamics. An information criterion for selecting the number of lags is also provided. We illustrate our methodology with several real data sets.
引用
收藏
页码:1391 / 1414
页数:24
相关论文
共 50 条
  • [41] Auto-regressive time series modelling of stochastic surfaces
    Naga, B
    Rao, P
    Murti, VSR
    2000 INTERNATIONAL CONFERENCE ON MODELING AND SIMULATION OF MICROSYSTEMS, TECHNICAL PROCEEDINGS, 2000, : 241 - 244
  • [42] Markov switching integer-valued generalized auto-regressive conditional heteroscedastic models for dengue counts
    Chen, Cathy W. S.
    Khamthong, Khemmanant
    Lee, Sangyeol
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C-APPLIED STATISTICS, 2019, 68 (04) : 963 - 983
  • [43] Revisit the Scalability of Deep Auto-Regressive Models for Graph Generation
    Yang, Shuai
    Shen, Xipeng
    Lim, Seung-Hwan
    2021 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2021,
  • [44] Interactive Character Control with Auto-Regressive Motion Diffusion Models
    Shi, Yi
    Wang, Jingbo
    Jiang, Xuekun
    Lin, Bingkun
    Dai, Bo
    Peng, Xue Bin
    ACM TRANSACTIONS ON GRAPHICS, 2024, 43 (04):
  • [45] Multiclass vector auto-regressive models for multistore sales data
    Wilms, Ines
    Barbaglia, Luca
    Croux, Christophe
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C-APPLIED STATISTICS, 2018, 67 (02) : 435 - 452
  • [46] Dynamic Facial Expression Recognition Using Auto-regressive Models
    Su, Zhiming
    Chen, Jingying
    Chen, Haiqing
    2014 7TH INTERNATIONAL CONGRESS ON IMAGE AND SIGNAL PROCESSING (CISP 2014), 2014, : 475 - 479
  • [47] Painter: Teaching Auto-regressive Language Models to Draw Sketches
    Pourreza, Reza
    Bhattacharyya, Apratim
    Panchal, Sunny
    Lee, Mingu
    Madan, Pulkit
    Memisevic, Roland
    2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS, ICCVW, 2023, : 305 - 314
  • [48] Cutoff for a class of auto-regressive models with vanishing additive noise
    Gerencser, Balazs
    Ottolini, Andrea
    SCANDINAVIAN JOURNAL OF STATISTICS, 2025, 52 (01) : 314 - 331
  • [49] GraphRNN: Generating Realistic Graphs with Deep Auto-regressive Models
    You, Jiaxuan
    Ying, Rex
    Ren, Xiang
    Hamilton, William L.
    Leskovec, Jure
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 80, 2018, 80
  • [50] Multiple-change-point detection for auto-regressive conditional heteroscedastic processes
    Fryzlewicz, P.
    Rao, S. Subba
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2014, 76 (05) : 903 - 924