Parameter stability and semiparametric inference in time varying auto-regressive conditional heteroscedasticity models

被引:12
|
作者
Truquet, Lionel [1 ,2 ]
机构
[1] Univ Rennes, Bruz, France
[2] Ecole Natl Stat & Anal & Informat, Campus Ker Lann,Rue Blaise Pascal,BP 37203, F-35172 Bruz, France
关键词
Auto-regressive conditional heteroscedasticity processes; Kernel smoothing; Locally stationary time series; Semiparametric inference; SERIES; NONSTATIONARITIES;
D O I
10.1111/rssb.12221
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We develop a complete methodology for detecting time varying or non-time-varying parameters in auto-regressive conditional heteroscedasticity (ARCH) processes. For this, we estimate and test various semiparametric versions of time varying ARCH models which include two well-known non-stationary ARCH-type models introduced in the econometrics literature. Using kernel estimation, we show that non-time-varying parameters can be estimated at the usual parametric rate of convergence and, for Gaussian noise, we construct estimates that are asymptotically efficient in a semiparametric sense. Then we introduce two statistical tests which can be used for detecting non-time-varying parameters or for testing the second-order dynamics. An information criterion for selecting the number of lags is also provided. We illustrate our methodology with several real data sets.
引用
收藏
页码:1391 / 1414
页数:24
相关论文
共 50 条
  • [31] Parametric modeling of hypersonic ballistic data based on time varying auto-regressive model
    HU YuDong
    LI JunLong
    ZHANG Zhao
    JING WuXing
    GAO ChangSheng
    Science China(Technological Sciences), 2020, (08) : 1396 - 1405
  • [32] Facial expression recognition using auto-regressive models
    Dornaika, Fadi
    Davoine, Franck
    18TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOL 2, PROCEEDINGS, 2006, : 520 - +
  • [33] Mixed frequency structural vector auto-regressive models
    Foroni, Claudia
    Marcellino, Massimiliano
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES A-STATISTICS IN SOCIETY, 2016, 179 (02) : 403 - 425
  • [34] Classical time varying factor-augmented vector auto-regressive models-estimation, forecasting and structural analysis
    Eickmeier, Sandra
    Lemke, Wolfgang
    Marcellino, Massimiliano
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES A-STATISTICS IN SOCIETY, 2015, 178 (03) : 493 - 533
  • [35] PARAMETER-ESTIMATION FOR AUTO-REGRESSIVE SYSTEMS WITH MISSING OBSERVATIONS
    MCGIFFIN, PB
    MURTHY, DNP
    INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 1980, 11 (09) : 1021 - 1034
  • [36] Auto-Regressive Models of Non-Stationary Time Series with Finite Length
    费万春
    白伦
    Tsinghua Science and Technology, 2005, (02) : 162 - 168
  • [37] Damage Detection Using Vector Auto-Regressive Models
    Huang, Zongming
    Liu, Gang
    Todd, Michael
    Mao, Zhu
    HEALTH MONITORING OF STRUCTURAL AND BIOLOGICAL SYSTEMS 2013, 2013, 8695
  • [38] Real time damage detection using recursive principal components and time varying auto-regressive modeling
    Krishnan, M.
    Bhowmik, B.
    Hazra, B.
    Pakrashi, V.
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2018, 101 : 549 - 574
  • [39] Auto-regressive neural networks for the modelling of time series
    van den Boogaard, HFP
    Gautam, DK
    Mynett, AE
    HYDROINFORMATICS '98, VOLS 1 AND 2, 1998, : 741 - 748
  • [40] Spatial Temporal Conditional Auto-Regressive Model: A New Autoregressive Matrix
    Mariella, Leonardo
    Tarantino, Marco
    AUSTRIAN JOURNAL OF STATISTICS, 2010, 39 (03) : 223 - 244