Some Ultraspheroidal Monogenic Clifford Gegenbauer Jacobi Polynomials and Associated Wavelets

被引:3
|
作者
Arfaoui, Sabrine [1 ]
Ben Mabrouk, Anouar [2 ]
机构
[1] Higher Inst Appl Sci & Technol Mateur, Dept Informat, St Tabarka, Mateur 7030, Tunisia
[2] Univ Kairouan, Inst Super Math Appl & Informat Kairouan, St Assad Ibn Al Fourat, Kairouan 3100, Tunisia
关键词
Clifford Gegenbauer Jacobi polynomials; Continuous wavelet transform; Clifford analysis; Clifford Fourier transform; Fourier-Plancherel;
D O I
10.1007/s00006-017-0788-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the present paper, new classes of wavelet functions are presented in the framework of Clifford analysis. Firstly, some classes of orthogonal polynomials are provided based on 2-parameters weight functions. Such classes englobe the well known ones of Jacobi and Gegenbauer polynomials when relaxing one of the parameters. The discovered polynomial sets are next applied to introduce new wavelet functions. Reconstruction formula as well as Fourier-Plancherel rules have been proved.
引用
收藏
页码:2287 / 2306
页数:20
相关论文
共 50 条
  • [21] SOME INTEGRALS INVOLVING ASSOCIATED LEGENDRE FUNCTIONS AND GEGENBAUER POLYNOMIALS
    LAURSEN, ML
    MITA, K
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1981, 14 (05): : 1065 - 1068
  • [22] Clifford-Gegenbauer polynomials related to the Dunkl Dirac operator
    De Bie, H.
    De Schepper, N.
    BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2011, 18 (02) : 193 - 214
  • [23] Some Identities on Bernoulli and Hermite Polynomials Associated with Jacobi Polynomials
    Kim, Taekyun
    Kim, Dae San
    Dolgy, Dmitry V.
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2012, 2012
  • [24] Clifford-Jacobi polynomials and the associated continuous wavelet transform in Euclidean space
    Brackx, Fred
    De Schepper, Nele
    Sommen, Frank
    WAVELET ANALYSIS AND APPLICATIONS, 2007, : 185 - +
  • [25] Some identities involving Gegenbauer polynomials
    Dae San Kim
    Taekyun Kim
    Seog-Hoon Rim
    Advances in Difference Equations, 2012
  • [26] Some identities involving Gegenbauer polynomials
    Kim, Dae San
    Kim, Taekyun
    Rim, Seog-Hoon
    ADVANCES IN DIFFERENCE EQUATIONS, 2012,
  • [27] SOME GENERATING FUNCTIONS FOR GEGENBAUER POLYNOMIALS
    JAIN, RN
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1969, 235 : 108 - &
  • [28] NEW GEGENBAUER-LIKE AND JACOBI-LIKE POLYNOMIALS WITH APPLICATIONS
    SOLTIS, JJ
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 1993, 330 (03): : 635 - 639
  • [29] INVESTIGATING THE ORTHOGONALITY CONDITIONS OF WAVELETS BASED ON JACOBI POLYNOMIALS
    Semenov, V
    Prestin, J.
    CYBERNETICS AND SYSTEMS ANALYSIS, 2018, 54 (04) : 678 - 686
  • [30] Some identities involving generalized Gegenbauer polynomials
    Zhang, Zhaoxiang
    ADVANCES IN DIFFERENCE EQUATIONS, 2017,