Some Ultraspheroidal Monogenic Clifford Gegenbauer Jacobi Polynomials and Associated Wavelets

被引:3
|
作者
Arfaoui, Sabrine [1 ]
Ben Mabrouk, Anouar [2 ]
机构
[1] Higher Inst Appl Sci & Technol Mateur, Dept Informat, St Tabarka, Mateur 7030, Tunisia
[2] Univ Kairouan, Inst Super Math Appl & Informat Kairouan, St Assad Ibn Al Fourat, Kairouan 3100, Tunisia
关键词
Clifford Gegenbauer Jacobi polynomials; Continuous wavelet transform; Clifford analysis; Clifford Fourier transform; Fourier-Plancherel;
D O I
10.1007/s00006-017-0788-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the present paper, new classes of wavelet functions are presented in the framework of Clifford analysis. Firstly, some classes of orthogonal polynomials are provided based on 2-parameters weight functions. Such classes englobe the well known ones of Jacobi and Gegenbauer polynomials when relaxing one of the parameters. The discovered polynomial sets are next applied to introduce new wavelet functions. Reconstruction formula as well as Fourier-Plancherel rules have been proved.
引用
收藏
页码:2287 / 2306
页数:20
相关论文
共 50 条
  • [11] New type of monogenic polynomials and associated spheroidal wavelets
    Department of Informatics, Higher Institute of Applied Sciences and Technology of Mateur, Street of Tabarka, Mateur
    7030, Tunisia
    不详
    5000, Tunisia
    不详
    3100, Tunisia
    arXiv,
  • [12] An integral formula for generalized Gegenbauer polynomials and Jacobi polynomials
    Xu, Y
    ADVANCES IN APPLIED MATHEMATICS, 2002, 29 (02) : 328 - 343
  • [13] The Generalized Clifford-Gegenbauer Polynomials Revisited
    De Schepper, Nele
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2009, 19 (02) : 253 - 268
  • [14] The Generalized Clifford-Gegenbauer Polynomials Revisited
    Nele De Schepper
    Advances in Applied Clifford Algebras, 2009, 19 : 253 - 268
  • [15] The Generating Function of the Clifford-Gegenbauer Polynomials
    De Bie, Hendrik
    Pena, Dixan Pena
    Sommen, Frank
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS (ICNAAM 2012), VOLS A AND B, 2012, 1479 : 321 - 324
  • [16] Adomian decomposition method by Gegenbauer and Jacobi polynomials
    Cenesiz, Yucel
    Kurnaz, Aydin
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2011, 88 (17) : 3666 - 3676
  • [17] POLYNOMIALS ASSOCIATED WITH GEGENBAUER POLYNOMIALS
    HORADAM, AF
    PETHE, S
    FIBONACCI QUARTERLY, 1981, 19 (05): : 393 - 398
  • [18] Novel summation formulas for Jacobi and Gegenbauer polynomials
    Travenec, Igor
    Samaj, Ladislav
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2022, 33 (01) : 81 - 90
  • [19] Hermite and Gegenbauer polynomials in superspace using Clifford analysis
    De Bie, H.
    Sommen, F.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (34) : 10441 - 10456
  • [20] JACOBI TYPE AND GEGENBAUER TYPE GENERALIZATION OF CERTAIN POLYNOMIALS
    Khan, Mumtaz Ahmad
    Asif, Mohammad
    MATEMATICKI VESNIK, 2012, 64 (02): : 147 - 158