Some Ultraspheroidal Monogenic Clifford Gegenbauer Jacobi Polynomials and Associated Wavelets

被引:3
|
作者
Arfaoui, Sabrine [1 ]
Ben Mabrouk, Anouar [2 ]
机构
[1] Higher Inst Appl Sci & Technol Mateur, Dept Informat, St Tabarka, Mateur 7030, Tunisia
[2] Univ Kairouan, Inst Super Math Appl & Informat Kairouan, St Assad Ibn Al Fourat, Kairouan 3100, Tunisia
关键词
Clifford Gegenbauer Jacobi polynomials; Continuous wavelet transform; Clifford analysis; Clifford Fourier transform; Fourier-Plancherel;
D O I
10.1007/s00006-017-0788-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the present paper, new classes of wavelet functions are presented in the framework of Clifford analysis. Firstly, some classes of orthogonal polynomials are provided based on 2-parameters weight functions. Such classes englobe the well known ones of Jacobi and Gegenbauer polynomials when relaxing one of the parameters. The discovered polynomial sets are next applied to introduce new wavelet functions. Reconstruction formula as well as Fourier-Plancherel rules have been proved.
引用
收藏
页码:2287 / 2306
页数:20
相关论文
共 50 条
  • [1] Some Ultraspheroidal Monogenic Clifford Gegenbauer Jacobi Polynomials and Associated Wavelets
    Sabrine Arfaoui
    Anouar Ben Mabrouk
    Advances in Applied Clifford Algebras, 2017, 27 : 2287 - 2306
  • [2] New Type of Gegenbauer-Jacobi-Hermite Monogenic Polynomials and Associated Continuous Clifford Wavelet Transform Some Monogenic Clifford Polynomials and Associated Wavelets
    Arfaoui, Sabrine
    Ben Mabrouk, Anouar
    Cattani, Carlo
    ACTA APPLICANDAE MATHEMATICAE, 2020, 170 (01) : 1 - 35
  • [3] New Type of Gegenbauer-Jacobi-Hermite Monogenic Polynomials and Associated Continuous Clifford Wavelet TransformSome Monogenic Clifford Polynomials and Associated Wavelets
    Sabrine Arfaoui
    Anouar Ben Mabrouk
    Carlo Cattani
    Acta Applicandae Mathematicae, 2020, 170 : 1 - 35
  • [4] New Type of Gegenbauer–Hermite Monogenic Polynomials and Associated Clifford Wavelets
    Sabrine Arfaoui
    Anouar Ben Mabrouk
    Carlo Cattani
    Journal of Mathematical Imaging and Vision, 2020, 62 : 73 - 97
  • [5] New Type of Gegenbauer-Hermite Monogenic Polynomials and Associated Clifford Wavelets
    Arfaoui, Sabrine
    Ben Mabrouk, Anouar
    Cattani, Carlo
    JOURNAL OF MATHEMATICAL IMAGING AND VISION, 2020, 62 (01) : 73 - 97
  • [6] Some Generalized Clifford-Jacobi Polynomials and Associated Spheroidal Wavelets
    Arfaoui, Sabrine
    Ben Mabrouk, Anouar
    ANALYSIS IN THEORY AND APPLICATIONS, 2022, 38 (04): : 394 - 416
  • [7] Some Old Orthogonal Polynomials Revisited and Associated Wavelets: Two-Parameters Clifford-Jacobi Polynomials and Associated Spheroidal Wavelets
    Arfaoui, Sabrine
    Ben Mabrouk, Anouar
    ACTA APPLICANDAE MATHEMATICAE, 2018, 155 (01) : 177 - 195
  • [8] Some Old Orthogonal Polynomials Revisited and Associated Wavelets: Two-Parameters Clifford-Jacobi Polynomials and Associated Spheroidal Wavelets
    Sabrine Arfaoui
    Anouar Ben Mabrouk
    Acta Applicandae Mathematicae, 2018, 155 : 177 - 195
  • [9] RESULTS ON THE ASSOCIATED JACOBI AND GEGENBAUER POLYNOMIALS
    LEWANOWICZ, S
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1993, 49 (1-3) : 137 - 143
  • [10] The Clifford-Gegenbauer polynomials and the associated continuous wavelet transform
    Brackx, F
    De Schepper, N
    Sommen, F
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2004, 15 (05) : 387 - 404