A Zero-Dissipative Runge-Kutta-Nystrom Method with Minimal Phase-Lag

被引:6
|
作者
Senu, Norazak [1 ]
Suleiman, Mohamed [1 ]
Ismail, Fudziah [1 ]
Othman, Mohamed [2 ]
机构
[1] Univ Putra Malaysia, Dept Math, Fac Sci, Upm Serdang 43400, Selangor, Malaysia
[2] Univ Putra Malaysia, Dept Commun Technol & Network, Fac Comp Sci & Informat Technol, Upm Serdang 43400, Selangor, Malaysia
关键词
NUMERICAL-INTEGRATION;
D O I
10.1155/2010/591341
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
An explicit Runge-Kutta-Nystrom method is developed for solving second-order differential equations of the form q '' = f(t, q) where the solutions are oscillatory. The method has zero-dissipation with minimal phase-lag at a cost of three-function evaluations per step of integration. Numerical comparisons with RKN3HS, RKN3V, RKN4G, and RKN4C methods show the preciseness and effectiveness of the method developed.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] PHASE-LAG ANALYSIS OF IMPLICIT RUNGE-KUTTA METHODS
    VANDERHOUWEN, PJ
    SOMMEIJER, BP
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1989, 26 (01) : 214 - 229
  • [42] Symbolic derivation of Runge-Kutta-Nystrom order conditions
    Tsitouras, Ch.
    Famelis, I. Th.
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2009, 46 (03) : 896 - 912
  • [43] Order properties of symplectic Runge-Kutta-Nystrom methods
    Xiao, AG
    Tang, YF
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2004, 47 (4-5) : 569 - 582
  • [44] Exponentially Fitted Symplectic Runge-Kutta-Nystrom methods
    Monovasilis, Th.
    Kalogiratou, Z.
    Simos, T. E.
    APPLIED MATHEMATICS & INFORMATION SCIENCES, 2013, 7 (01): : 81 - 85
  • [45] Exponentially fitted explicit Runge-Kutta-Nystrom methods
    Franco, JM
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2004, 167 (01) : 1 - 19
  • [46] Starting algorithms for implicit Runge-Kutta-Nystrom methods
    Laburta, MP
    APPLIED NUMERICAL MATHEMATICS, 1998, 27 (03) : 233 - 251
  • [47] A family of explicit parallel Runge-Kutta-Nystrom methods
    Franco, J. M.
    Gomez, I.
    APPLIED MATHEMATICS AND COMPUTATION, 2011, 218 (08) : 4177 - 4191
  • [48] LOW ORDER PRACTICAL RUNGE-KUTTA-NYSTROM METHODS
    FINE, JM
    COMPUTING, 1987, 38 (04) : 281 - 297
  • [49] Exponentially Fitted Symplectic Runge-Kutta-Nystrom Methods
    Monovasilis, Th.
    Kalogiratou, Z.
    Simos, T. E.
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS (ICNAAM 2012), VOLS A AND B, 2012, 1479 : 1395 - 1398
  • [50] Revised exponentially fitted Runge-Kutta-Nystrom methods
    D'Ambrosio, R.
    Paternoster, B.
    Santomauro, G.
    APPLIED MATHEMATICS LETTERS, 2014, 30 : 56 - 60