A Zero-Dissipative Runge-Kutta-Nystrom Method with Minimal Phase-Lag

被引:6
|
作者
Senu, Norazak [1 ]
Suleiman, Mohamed [1 ]
Ismail, Fudziah [1 ]
Othman, Mohamed [2 ]
机构
[1] Univ Putra Malaysia, Dept Math, Fac Sci, Upm Serdang 43400, Selangor, Malaysia
[2] Univ Putra Malaysia, Dept Commun Technol & Network, Fac Comp Sci & Informat Technol, Upm Serdang 43400, Selangor, Malaysia
关键词
NUMERICAL-INTEGRATION;
D O I
10.1155/2010/591341
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
An explicit Runge-Kutta-Nystrom method is developed for solving second-order differential equations of the form q '' = f(t, q) where the solutions are oscillatory. The method has zero-dissipation with minimal phase-lag at a cost of three-function evaluations per step of integration. Numerical comparisons with RKN3HS, RKN3V, RKN4G, and RKN4C methods show the preciseness and effectiveness of the method developed.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] On fitted modifications of Runge-Kutta-Nystrom pairs
    Tsitouras, Ch.
    APPLIED MATHEMATICS AND COMPUTATION, 2014, 232 : 416 - 423
  • [32] A Diagonally Implicit Symplectic Runge-Kutta Method with Minimum Phase-lag
    Kalogiratou, Z.
    Monovasilis, Th
    Simos, T. E.
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2011: INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, VOLS A-C, 2011, 1389
  • [33] An embedded explicit Runge-Kutta-Nystrom method for solving oscillatory problems
    Senu, N.
    Suleiman, M.
    Ismail, F.
    PHYSICA SCRIPTA, 2009, 80 (01)
  • [34] A mono-implicit Runge-Kutta-Nystrom modification of the Numerov method
    VanHecke, T
    VanDaele, M
    VandenBerghe, G
    DeMeyer, H
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1997, 78 (01) : 161 - 177
  • [35] Transient Stability Simulation by Explicit and Symplectic Runge-Kutta-Nystrom Method
    Wang Fangzong
    He Yifan
    Ye Jing
    MANUFACTURING SCIENCE AND TECHNOLOGY, PTS 1-8, 2012, 383-390 : 1960 - 1964
  • [36] Implicit third derivative Runge-Kutta-Nystrom method with trigonometric coefficients
    Jator, S. N.
    NUMERICAL ALGORITHMS, 2015, 70 (01) : 133 - 150
  • [37] The performance of phase-lag enhanced explicit Runge-Kutta Nystrom pairs on N-body problems
    Sharp, P. W.
    Castillo-Rogez, J. C.
    Grazier, K. R.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2012, 236 (09) : 2378 - 2386
  • [38] Economical handling of Runge-Kutta-Nystrom step rejection
    Kovalnogov, V. N.
    Fedorov, R. V.
    Karpukhina, M. T.
    Kornilova, M. I.
    Simos, T. E.
    Tsitouras, Ch.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2024, 438
  • [39] Continuous approximation with embedded Runge-Kutta-Nystrom methods
    Baker, TS
    Dormand, JR
    Prince, PJ
    APPLIED NUMERICAL MATHEMATICS, 1999, 29 (02) : 171 - 188
  • [40] ORDER CONDITIONS FOR CANONICAL RUNGE-KUTTA-NYSTROM METHODS
    CALVO, MP
    SANZSERNA, JM
    BIT, 1992, 32 (01): : 131 - 142