Properties of the fractional (exponential) Radon transform

被引:2
|
作者
Moon, Sunghwan [1 ]
机构
[1] Kyungpook Natl Univ, Dept Math, Daegu 41566, South Korea
基金
新加坡国家研究基金会;
关键词
Fractional; Fourier transform; Radon transform; exponential Radon transform; tomography; X-ray transform; FOURIER-TRANSFORMS; OPTICAL IMPLEMENTATION;
D O I
10.1080/10652469.2017.1390666
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The fractional Radon transform defined, based on the Fourier slice theorem and the fractional Fourier transform, has many potential applications in optics and the pattern-recognition field. Here we study many properties of the fractional Radon transform using existing theory of the regular Radon transform: the inversion formulas, stability estimates, uniqueness and reconstruction for a local data problem, and a range description. Also, we define the fractional exponential Radon transform and present its inversion.
引用
收藏
页码:923 / 939
页数:17
相关论文
共 50 条
  • [31] THE RADON-TRANSFORM AND ITS PROPERTIES
    DURRANI, TS
    BISSET, D
    GEOPHYSICS, 1984, 49 (08) : 1180 - 1187
  • [32] Minimax Optimal Estimator in a Stochastic Inverse Problem for Exponential Radon Transform
    Abhishek, Anuj
    SANKHYA-SERIES A-MATHEMATICAL STATISTICS AND PROBABILITY, 2023, 85 (01): : 980 - 998
  • [33] Improved ambiguity estimation using a modified fractional Radon transform
    Sun, G.
    Xing, M. -D.
    Wang, Y.
    Zhou, F.
    Wu, Y.
    Bao, Z.
    IET RADAR SONAR AND NAVIGATION, 2011, 5 (04): : 489 - 495
  • [34] Minimax Optimal Estimator in a Stochastic Inverse Problem for Exponential Radon Transform
    Anuj Abhishek
    Sankhya A, 2023, 85 : 980 - 998
  • [35] Range spaces and inversion formulas for the exponential radon transform and its dual
    Lazhari, MN
    RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS, 1999, 6 (03) : 314 - 330
  • [36] Complete Radon–Kipriyanov Transform: Some Properties
    L. N. Lyakhov
    M. G. Lapshina
    S. A. Roshchupkin
    Doklady Mathematics, 2019, 100 : 524 - 528
  • [37] Exponential radon transform inversion based on harmonic analysis of the Euclidean motion group
    Yarman, CE
    Yazici, B
    2005 International Conference on Image Processing (ICIP), Vols 1-5, 2005, : 3377 - 3379
  • [38] A Novel Keystone Transform Based Algorithm for Moving Target Imaging with Radon Transform and Fractional Fourier Transform Involved
    Yang, Jiefang
    Zhang, Yunhua
    PIERS 2014 GUANGZHOU: PROGRESS IN ELECTROMAGNETICS RESEARCH SYMPOSIUM, 2014, : 1406 - 1410
  • [39] Adaptive Estimation of a Function from its Exponential Radon Transform in Presence of Noise
    Arya, Sakshi
    Abhishek, Anuj
    SANKHYA-SERIES A-MATHEMATICAL STATISTICS AND PROBABILITY, 2023, 85 (02): : 1127 - 1155
  • [40] AN ANALYTICAL INVERSION OF THE 180 degrees EXPONENTIAL RADON TRANSFORM WITH A NUMERICALLY GENERATED KERNEL
    Huang, Qiu
    Zeng, Gengsheng L.
    Gullberg, Grant T.
    INTERNATIONAL JOURNAL OF IMAGE AND GRAPHICS, 2007, 7 (01) : 71 - 85