The fractional Radon transform defined, based on the Fourier slice theorem and the fractional Fourier transform, has many potential applications in optics and the pattern-recognition field. Here we study many properties of the fractional Radon transform using existing theory of the regular Radon transform: the inversion formulas, stability estimates, uniqueness and reconstruction for a local data problem, and a range description. Also, we define the fractional exponential Radon transform and present its inversion.
机构:
Al Balqa Appl Univ, Fac Engn Technol, Dept Appl Sci, Amman 11134, JordanAl Balqa Appl Univ, Fac Engn Technol, Dept Appl Sci, Amman 11134, Jordan
Al-Omari, S. K. Q.
Kilicman, A.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Putra Malaysia, Dept Math, Serdang 43400, Selangor, Malaysia
Univ Putra Malaysia, Inst Math Res, Serdang 43400, Selangor, MalaysiaAl Balqa Appl Univ, Fac Engn Technol, Dept Appl Sci, Amman 11134, Jordan
机构:
Univ Utah, UCAIR, Dept Radiol, 729 Arapeen Dr, Salt Lake City, UT 84108 USAUniv Utah, UCAIR, Dept Radiol, 729 Arapeen Dr, Salt Lake City, UT 84108 USA
Huang, Qiu
论文数: 引用数:
h-index:
机构:
Zeng, Gengsheng L.
Gullberg, Grant T.
论文数: 0引用数: 0
h-index: 0
机构:
EO Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USAUniv Utah, UCAIR, Dept Radiol, 729 Arapeen Dr, Salt Lake City, UT 84108 USA