Properties of the fractional (exponential) Radon transform

被引:2
|
作者
Moon, Sunghwan [1 ]
机构
[1] Kyungpook Natl Univ, Dept Math, Daegu 41566, South Korea
基金
新加坡国家研究基金会;
关键词
Fractional; Fourier transform; Radon transform; exponential Radon transform; tomography; X-ray transform; FOURIER-TRANSFORMS; OPTICAL IMPLEMENTATION;
D O I
10.1080/10652469.2017.1390666
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The fractional Radon transform defined, based on the Fourier slice theorem and the fractional Fourier transform, has many potential applications in optics and the pattern-recognition field. Here we study many properties of the fractional Radon transform using existing theory of the regular Radon transform: the inversion formulas, stability estimates, uniqueness and reconstruction for a local data problem, and a range description. Also, we define the fractional exponential Radon transform and present its inversion.
引用
收藏
页码:923 / 939
页数:17
相关论文
共 50 条
  • [1] Noise properties of the inverse π-scheme exponential radon transform
    Sidky, EY
    Kao, CL
    LaRiviere, PJ
    Pan, XC
    MEDICAL IMAGING 2002: IMAGE PROCESSING, VOL 1-3, 2002, 4684 : 790 - 796
  • [2] THE EXPONENTIAL RADON-TRANSFORM
    TRETIAK, O
    METZ, C
    SIAM JOURNAL ON APPLIED MATHEMATICS, 1980, 39 (02) : 341 - 354
  • [3] Fractional radon transform: definition
    Zalevsky, Zeev
    Mendlovic, David
    (35):
  • [4] Fractional Radon transform: Definition
    Zalevsky, Z
    Mendlovic, D
    APPLIED OPTICS, 1996, 35 (23): : 4628 - 4631
  • [5] Range conditions for the exponential radon transform
    Aguilar, V
    Ehrenpreis, L
    Kuchment, P
    JOURNAL D ANALYSE MATHEMATIQUE, 1996, 68 : 1 - 13
  • [6] NUMERICAL INVERSION OF THE EXPONENTIAL RADON TRANSFORM
    Deng, Yun-Gang
    Wang, Jin-Ping
    BOUNDARY VALUE PROBLEMS, INTEGRAL EQUATIONS AND RELATED PROBLEMS, 2011, : 132 - 139
  • [7] Fractional radon transform and transform of Wigner operator
    Fan, HY
    Chen, JH
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2003, 39 (02) : 147 - 150
  • [8] Exponential Radon transform of random functions
    Ushakov, V.G., 2005, Izdatel'stvo Moskovskogo Universiteta
  • [9] From complex fractional Fourier transform to complex fractional radon transform
    Fan, HY
    Jiang, NQ
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2004, 42 (01) : 23 - 26
  • [10] From Complex Fractional Fourier Transform to Complex Fractional Radon Transform
    FAN Hong-Yi JIANG Nian-Quan Department of Material Science and Engineering
    Communications in Theoretical Physics, 2004, 42 (07) : 23 - 26