On the existence problem of the total domination vertex critical graphs

被引:5
|
作者
Sohn, Moo Young [3 ]
Kim, Dongseok [2 ]
Kwon, Young Soo [1 ]
Lee, Jaeun [1 ]
机构
[1] Yeungnam Univ, Dept Math, Kyongsan 712749, South Korea
[2] Kyonggi Univ, Dept Math, Suwon 443760, South Korea
[3] Changwon Natl Univ, Dept Math, Chang Won 641773, South Korea
关键词
Total domination numbers; Total domination vertex critical graphs; Maximal degree; DIAMETER;
D O I
10.1016/j.dam.2010.09.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The existence problem of the total domination vertex critical graphs has been studied in a series of articles we first settle the existence problem with respect to the parities of the total domination number m and the maximum degree Delta for even m except m = 4 there is no m-gamma(iota) critical graph regardless of the parity of Delta for m = 4 or odd m >= 3 and for even Delta an m-gamma(iota)-critical graph exists if and only if Delta >= 2left perpendicular m-1/2 right perpendicular for m = 4 or odd m >= 3 and for odd Delta if Delta >= 2left perpendicular m-1/2 right perpendicular + 7 then m-gamma(iota)-critical graphs exist if Delta < 2left perpendicular m-1/2 right perpendicular then m-gamma(iota)-critical graphs do not exist The only remaining open cases are Delta = 2left perpendicular m-1/2 right perpendicular + k k = 1 3 5 Second we study these remaining open cases when m = 4 or odd m >= 9 As the previously known result for m = 3 we also show that for Delta(G) = 3 5 7 there is no 4-gamma(iota)-critical graph of order Delta (G) + 4 On the contrary it is shown that for odd m >= 9 there exists an m-gamma(iota)-critical graph for all Delta >= m - 1 (C) 2010 Elsevier B V All rights reserved
引用
收藏
页码:46 / 52
页数:7
相关论文
共 50 条
  • [31] Total domination changing and stable graphs upon vertex removal
    Department of Mathematics, East Tennessee State University, Johnson City, TN 37614-0002, United States
    不详
    [J]. Discrete Appl Math, 15 (1548-1554):
  • [32] Total domination changing and stable graphs upon vertex removal
    Desormeaux, Wyatt J.
    Haynes, Teresa W.
    Henning, Michael A.
    [J]. DISCRETE APPLIED MATHEMATICS, 2011, 159 (15) : 1548 - 1554
  • [33] Algorithmic Aspects of Total Vertex-Edge Domination in Graphs
    Kumar, H. Naresh
    Chellali, Mustapha
    Venkatakrishnan, Y. B.
    [J]. INTERNATIONAL JOURNAL OF FOUNDATIONS OF COMPUTER SCIENCE, 2023,
  • [34] Total vertex-edge domination in graphs: Complexity and algorithms
    Singhwal, Nitisha
    Reddy, Palagiri Venkata Subba
    [J]. DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2022, 14 (07)
  • [35] The Existence Problem of --Critical Graphs
    Wang, Yan
    Wang, Chunxiang
    [J]. GRAPHS AND COMBINATORICS, 2016, 32 (01) : 377 - 402
  • [36] DOUBLE DOMINATION CRITICAL AND STABLE GRAPHS UPON VERTEX REMOVAL
    Khelifi, Soufiane
    Chellali, Mustapha
    [J]. DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2012, 32 (04) : 643 - 657
  • [37] On minimum cutsets in independent domination vertex-critical graphs
    Ananchuen, Nawarat
    Ruangthampisan, Sriphan
    Ananchuen, Watcharaphong
    Caccetta, Louis
    [J]. AUSTRALASIAN JOURNAL OF COMBINATORICS, 2018, 71 : 369 - 380
  • [38] Independent Roman Domination Stable and Vertex-Critical Graphs
    Wu, Pu
    Shao, Zehui
    Zhu, Enqiang
    Jiang, Huiqin
    Nazari-Moghaddam, S.
    Sheikholeslami, Seyed Mahmoud
    [J]. IEEE ACCESS, 2018, 6 : 74737 - 74746
  • [39] WEAKLY CONNECTED TOTAL DOMINATION CRITICAL GRAPHS
    Sandueta, Elsie P.
    [J]. ADVANCES AND APPLICATIONS IN DISCRETE MATHEMATICS, 2020, 25 (02): : 267 - 274
  • [40] Perfect Matchings in Total Domination Critical Graphs
    Michael A. Henning
    Anders Yeo
    [J]. Graphs and Combinatorics, 2011, 27 : 685 - 701