Higher voltage plateau cubic Prussian White for Na-ion batteries

被引:85
|
作者
Jose Piernas-Munoz, Maria [1 ]
Castillo-Martinez, Elizabeth [1 ,3 ]
Bondarchuk, Oleksandr [1 ]
Armand, Michel [1 ]
Rojo, Teofilo [1 ,2 ]
机构
[1] CIC Energigune, Parque Tecnol Alava,Albert Einstein 48,ED CIC, Minano 01050, Spain
[2] Univ Basque Country, Dept Quim Inorgan, UPV EHU, POB 664, Bilbao 48080, Spain
[3] Univ Cambridge, Dept Chem, Lensfield Rd, Cambridge CB2 3ED, England
关键词
Electrochemical energy storage; Na-ion batteries; Prussian white; Prussian blue related; Hybrid battery; SUPERIOR CATHODE; BLUE; HEXACYANOFERRATE; FRAMEWORK; STORAGE; WATER; LI;
D O I
10.1016/j.jpowsour.2016.05.050
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Cubic sodium Prussian White, Na2-xFe2(CN)(6)center dot yH(2)O, and potassium Prussian White, K2-xFe2(CN)(6)center dot yH(2)O, are prepared following a mild synthetic methodology. While cubic symmetry is confirmed by XRD and TEM, IR and XPS show characteristic features different from Prussian Blue compositions. When investigated as cathode materials in sodium ion batteries, both compounds exhibit reversible capacities above 140 mAh g(-1) at 1C (ca. 80 mA g(-1)). While sodium Prussian White shows better high rate capability (10C/0.1C = 0.64), potassium Prussian White exhibits longer cycle stability, with up to 80% of capacity retention after 500 cycles. Interestingly, the potassium Prussian White phase also provides an increase of 0.35 V in the high voltage redox peak compared to the sodium Prussian White analogue ascribed to the preferential insertion of K+ ions instead of Na+, resulting in an increment of the gravimetric energy density. On the other hand, the insertion of Na+ seems to occur at the lower voltage plateau. This hybrid Na+ and K+ insertion in the framework of potassium Prussian White is most likely the responsible of the long cycle stability as a consequence of synergistic effects. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:766 / 773
页数:8
相关论文
共 50 条
  • [41] Rechargeable Na-ion batteries for large format applications
    Komaba, Shinichi
    Kubota, Kei
    Dahbi, Mouad
    Tokiwa, Kazuyasu
    2014 INTERNATIONAL RENEWABLE AND SUSTAINABLE ENERGY CONFERENCE (IRSEC), 2014, : 651 - 654
  • [42] Composite-Structure Materials for Na-Ion Batteries
    Su, Heng
    Yu, Haijun
    SMALL METHODS, 2019, 3 (04)
  • [43] Low-temperature performance of Na-ion batteries
    Meng Li
    Haoxiang Zhuo
    Qihang Jing
    Yang Gu
    Zhou Liao
    Kuan Wang
    Jiangtao Hu
    Dongsheng Geng
    Xueliang Sun
    Biwei Xiao
    Carbon Energy, 2024, 6 (10) : 185 - 214
  • [44] Nanoarchitecture electrodes for Li- and Na-ion batteries
    Johnson, Christopher
    Xiong, Hui
    Tepavcevic, Sanja
    Slater, Michael
    Koo, Bonil
    Shevchenko, Elena
    Rajh, Tijana
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2013, 246
  • [45] Anionic redox reaction mechanism in Na-ion batteries
    Hou, Xueyan
    Rong, Xiaohui
    Lu, Yaxiang
    Hu, Yong-Sheng
    CHINESE PHYSICS B, 2022, 31 (09)
  • [46] SnP nanocrystals as anode materials for Na-ion batteries
    Liu, Junfeng
    Wang, Shutao
    Kravchyk, Kostiantyn
    Ibanez, Maria
    Krumeich, Frank
    Widmer, Roland
    Nasiou, Despina
    Meyns, Michaela
    Llorca, Jordi
    Arbiol, Jordi
    Kovalenko, Maksym, V
    Cabot, Andreu
    JOURNAL OF MATERIALS CHEMISTRY A, 2018, 6 (23) : 10958 - 10966
  • [47] Towards high performance cathodes for Na-ion batteries
    Wagemaker, Marnix
    SCIENCE BULLETIN, 2018, 63 (09) : 529 - 530
  • [48] New cathode and anode materials for Na-ion batteries
    Hu, Yong-Sheng
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 257
  • [49] Towards high performance cathodes for Na-ion batteries
    Marnix Wagemaker
    Science Bulletin, 2018, 63 (09) : 529 - 530
  • [50] Performance analysis of Na-ion batteries by machine learning
    Oral, Burcu
    Tekin, Burak
    Eroglu, Damla
    Yildirim, Ramazan
    JOURNAL OF POWER SOURCES, 2022, 549