Higher voltage plateau cubic Prussian White for Na-ion batteries

被引:85
|
作者
Jose Piernas-Munoz, Maria [1 ]
Castillo-Martinez, Elizabeth [1 ,3 ]
Bondarchuk, Oleksandr [1 ]
Armand, Michel [1 ]
Rojo, Teofilo [1 ,2 ]
机构
[1] CIC Energigune, Parque Tecnol Alava,Albert Einstein 48,ED CIC, Minano 01050, Spain
[2] Univ Basque Country, Dept Quim Inorgan, UPV EHU, POB 664, Bilbao 48080, Spain
[3] Univ Cambridge, Dept Chem, Lensfield Rd, Cambridge CB2 3ED, England
关键词
Electrochemical energy storage; Na-ion batteries; Prussian white; Prussian blue related; Hybrid battery; SUPERIOR CATHODE; BLUE; HEXACYANOFERRATE; FRAMEWORK; STORAGE; WATER; LI;
D O I
10.1016/j.jpowsour.2016.05.050
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Cubic sodium Prussian White, Na2-xFe2(CN)(6)center dot yH(2)O, and potassium Prussian White, K2-xFe2(CN)(6)center dot yH(2)O, are prepared following a mild synthetic methodology. While cubic symmetry is confirmed by XRD and TEM, IR and XPS show characteristic features different from Prussian Blue compositions. When investigated as cathode materials in sodium ion batteries, both compounds exhibit reversible capacities above 140 mAh g(-1) at 1C (ca. 80 mA g(-1)). While sodium Prussian White shows better high rate capability (10C/0.1C = 0.64), potassium Prussian White exhibits longer cycle stability, with up to 80% of capacity retention after 500 cycles. Interestingly, the potassium Prussian White phase also provides an increase of 0.35 V in the high voltage redox peak compared to the sodium Prussian White analogue ascribed to the preferential insertion of K+ ions instead of Na+, resulting in an increment of the gravimetric energy density. On the other hand, the insertion of Na+ seems to occur at the lower voltage plateau. This hybrid Na+ and K+ insertion in the framework of potassium Prussian White is most likely the responsible of the long cycle stability as a consequence of synergistic effects. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:766 / 773
页数:8
相关论文
共 50 条
  • [31] P2-NaNiTeO Cathode for Na-ion Batteries with High Voltage and Excellent Stability
    Wenhui Wang
    Jiaolong Zhang
    Chaolin Li
    Xiaohang Kou
    Baohua Li
    Denis YWYu
    Energy & Environmental Materials , 2023, (02) : 142 - 149
  • [32] Microstructural Investigation into Na-Ion Storage Behaviors of Cellulose-Based Hard Carbons for Na-Ion Batteries
    Kim, Jae-Bum
    Lee, Gi-Hyeok
    Lau, Vincent Wing-hei
    Zhang, Jiliang
    Zou, Feng
    Chen, Mingzhe
    Zhou, Limin
    Nam, Kyung-Wan
    Kang, Yong-Mook
    JOURNAL OF PHYSICAL CHEMISTRY C, 2021, 125 (27): : 14559 - 14566
  • [33] Synthesis and electrochemical properties of Na-rich Prussian blue analogues containing Mn, Fe, Co, and Fe for Na-ion batteries
    Bie, Xiaofei
    Kubota, Kei
    Hosaka, Tomooki
    Chihara, Kuniko
    Komaba, Shinichi
    JOURNAL OF POWER SOURCES, 2018, 378 : 322 - 330
  • [34] Gel Polymer Electrolytes Design for Na-Ion Batteries
    Pan, Jun
    Wang, Nana
    Fan, Hong Jin
    SMALL METHODS, 2022, 6 (11)
  • [35] Defective Hard Carbon Anode for Na-Ion Batteries
    Li, Zhifei
    Chen, Yicong
    Jian, Zelang
    Jiang, Heng
    Razink, Joshua James
    Stickle, William F.
    Neuefeind, Joerg C.
    Ji, Xiulei
    CHEMISTRY OF MATERIALS, 2018, 30 (14) : 4536 - 4542
  • [36] Sulfonated polybenzothiazole cathode materials for Na-ion batteries
    Wang, Gang
    Yang, Shuai
    Ding, Youchi
    Lu, Mingxia
    Hua, Bingyan
    Kang, Jiaqi
    Tang, Wenshuai
    Wei, Hongliang
    Zhu, Limin
    Cao, Xiaoyu
    CHEMICAL COMMUNICATIONS, 2022, 58 (88) : 12333 - 12336
  • [37] Understanding the Design of Cathode Materials for Na-Ion Batteries
    Gupta, Priyanka
    Pushpakanth, Sujatha
    Haider, M. Ali
    Basu, Suddhasatwa
    ACS OMEGA, 2022, 7 (07): : 5605 - 5614
  • [38] Low-temperature performance of Na-ion batteries
    Li, Meng
    Zhuo, Haoxiang
    Jing, Qihang
    Gu, Yang
    Liao, Zhou
    Wang, Kuan
    Hu, Jiangtao
    Geng, Dongsheng
    Sun, Xueliang
    Xiao, Biwei
    CARBON ENERGY, 2024, 6 (10)
  • [39] Advancement of technology towards developing Na-ion batteries
    Jamesh, Mohammed Ibrahim
    Prakash, A. S.
    JOURNAL OF POWER SOURCES, 2018, 378 : 268 - 300
  • [40] Anionic redox reaction mechanism in Na-ion batteries
    侯雪妍
    容晓晖
    陆雅翔
    胡勇胜
    Chinese Physics B, 2022, (09) : 745 - 752