On the derivatives of the Lempert functions

被引:8
|
作者
Nikolov, Nikolai [1 ]
Pflug, Peter [2 ]
机构
[1] Bulgarian Acad Sci, Inst Math & Informat, BU-1113 Sofia, Bulgaria
[2] Carl von Ossietzky Univ Oldenburg, Inst Math, Fak 5, D-26111 Oldenburg, Germany
关键词
Lempert functions; Kobayashi pseudodistance; Kobayashi-Royden pseudometric; Kobayashi-Buseman pseudometric;
D O I
10.1007/s10231-007-0056-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that if the Kobayashi-Royden metric of a complex manifold is continuous and positive at a given point and any non-zero tangent vector, then the "derivatives" of the higher order Lempert functions exist and equal the respective Kobayashi metrics at the point. It is a generalization of a result by M. Kobayashi for taut manifolds.
引用
收藏
页码:547 / 553
页数:7
相关论文
共 50 条