DISCONTINUITY OF THE LEMPERT FUNCTION OF THE SPECTRAL BALL

被引:5
|
作者
Thomas, Pascal J. [1 ]
Nguyen Van Trao [2 ]
机构
[1] Univ Toulouse, Inst Math Toulouse, UPS, INSA,UTM,UT1, F-31062 Toulouse, France
[2] Hanoi Natl Univ Educ, Dept Math, Hanoi, Vietnam
关键词
NEVANLINNA-PICK PROBLEM; SYMMETRIZED POLYDISK; UNIT BALL; GEOMETRY;
D O I
10.1090/S0002-9939-10-10269-X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We give some further criteria for continuity or discontinuity of the Lempert function of the spectral ball Omega(n), with respect to one or both of its arguments, in terms of cyclicity of the matrices involved.
引用
收藏
页码:2403 / 2412
页数:10
相关论文
共 50 条
  • [1] Discontinuity of the Lempert function and the Kobayashi-Royden metric of the spectral ball
    Nikolov, Nikolai
    Thomas, Pascal J.
    Zwonek, Wlodzimierz
    [J]. INTEGRAL EQUATIONS AND OPERATOR THEORY, 2008, 61 (03) : 401 - 412
  • [2] Discontinuity of the Lempert Function and the Kobayashi-Royden Metric of the Spectral Ball
    Nikolai Nikolov
    Pascal J. Thomas
    Włodzimierz Zwonek
    [J]. Integral Equations and Operator Theory, 2008, 61 : 401 - 412
  • [3] Separate continuity of the Lempert function of the spectral ball
    Nikolov, Nikolai
    Thomas, Pascal J.
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 367 (02) : 710 - 712
  • [4] Convergence and multiplicities for the Lempert function
    Thomas, Pascal J.
    Nguyen Van Trao
    [J]. ARKIV FOR MATEMATIK, 2009, 47 (01): : 183 - 204
  • [5] Upper bound for the Lempert function of smooth domains
    Nikolai Nikolov
    Peter Pflug
    Pascal J. Thomas
    [J]. Mathematische Zeitschrift, 2010, 266 : 425 - 430
  • [6] Upper bound for the Lempert function of smooth domains
    Nikolov, Nikolai
    Pflug, Peter
    Thomas, Pascal J.
    [J]. MATHEMATISCHE ZEITSCHRIFT, 2010, 266 (02) : 425 - 430
  • [7] Kobayashi–Royden pseudometric versus Lempert function
    Nikolai Nikolov
    Peter Pflug
    [J]. Annali di Matematica Pura ed Applicata, 2011, 190 : 589 - 593
  • [8] The Lempert function of the symmetrized polydisc in higher dimensions is not a distance
    Nikolov, Nikolai
    Pflug, Peter
    Zwonek, Wlodzimierz
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 135 (09) : 2921 - 2928
  • [9] Kobayashi-Royden pseudometric versus Lempert function
    Nikolov, Nikolai
    Pflug, Peter
    [J]. ANNALI DI MATEMATICA PURA ED APPLICATA, 2011, 190 (04) : 589 - 593
  • [10] The multipole Lempert function is monotone under inclusion of pole sets
    Nikolov, N
    Pflug, P
    [J]. MICHIGAN MATHEMATICAL JOURNAL, 2006, 54 (01) : 111 - 116