Development of a graded index microlens based fiber optical trap and its characterization using principal component analysis

被引:12
|
作者
Nylk, J. [1 ,2 ]
Kristensen, M. V. G. [1 ]
Mazilu, M. [1 ]
Thayil, A. K. [1 ,2 ]
Mitchell, C. A. [1 ,2 ]
Campbell, E. C. [2 ]
Powis, S. J. [3 ]
Gunn-Moore, F. J. [2 ]
Dholakia, K. [1 ]
机构
[1] Univ St Andrews, Sch Phys & Astron, SUPA, St Andrews KY16 9SS, Fife, Scotland
[2] Univ St Andrews, Sch Biol, St Andrews KY16 9TF, Fife, Scotland
[3] Univ St Andrews, Sch Med, St Andrews KY16 9TF, Fife, Scotland
来源
BIOMEDICAL OPTICS EXPRESS | 2015年 / 6卷 / 04期
基金
英国工程与自然科学研究理事会;
关键词
TWEEZERS; MICROSCOPY; CELL; MANIPULATION; SYNAPSES;
D O I
10.1364/BOE.6.001512
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
We demonstrate a miniaturized single beam fiber optical trapping probe based on a high numerical aperture graded index (GRIN) micro-objective lens. This enables optical trapping at a distance of 200 mu m from the probe tip. The fiber trapping probe is characterized experimentally using power spectral density analysis and an original approach based on principal component analysis for accurate particle tracking. Its use for biomedical microscopy is demonstrated through optically mediated immunological synapse formation. (C) 2015 Optical Society of America
引用
收藏
页码:1512 / 1519
页数:8
相关论文
共 50 条
  • [41] The Langat River Water Quality Index Based on Principal Component Analysis
    Ali, Zalina Mohd
    Ibrahim, Noor Akma
    Mengersen, Kerrie
    Shitan, Mahendran
    Juahir, Hafizan
    PROCEEDINGS OF THE 20TH NATIONAL SYMPOSIUM ON MATHEMATICAL SCIENCES (SKSM20): RESEARCH IN MATHEMATICAL SCIENCES: A CATALYST FOR CREATIVITY AND INNOVATION, PTS A AND B, 2013, 1522 : 1322 - 1336
  • [42] Surface plasmon resonance biosensor using inverted graded index optical fiber
    Nasirifar, Ruhallah
    Danaie, Mohammad
    Dideban, Abbas
    PHOTONICS AND NANOSTRUCTURES-FUNDAMENTALS AND APPLICATIONS, 2021, 44
  • [43] Analysis of the Emission Features in Graded-Index Polymer Optical Fiber Amplifiers
    Ayesta, Igor
    Arrue, Jon
    Jimenez, Felipe
    Asuncion Illarramendi, Maria
    Zubia, Joseba
    JOURNAL OF LIGHTWAVE TECHNOLOGY, 2011, 29 (17) : 2629 - 2635
  • [44] Stock Index Prediction Based on Principal Component Analysis and Machine Learning
    Zhu, Shitao
    Zhao, Ming
    Wei, Shengqing
    An, Simeng
    2020 INTERNATIONAL CONFERENCE ON BIG DATA & ARTIFICIAL INTELLIGENCE & SOFTWARE ENGINEERING (ICBASE 2020), 2020, : 246 - 249
  • [45] Assessment of Sustainable Development Using Cluster Analysis and Principal Component Analysis
    Drastichova, Magdalena
    Filzmoser, Peter
    PROBLEMY EKOROZWOJU, 2019, 14 (02): : 7 - 24
  • [46] Spatial characterization of wafer state using principal component analysis of optical emission spectra in plasma etch
    White, DA
    Boning, D
    Butler, W
    Barna, GG
    IEEE TRANSACTIONS ON SEMICONDUCTOR MANUFACTURING, 1997, 10 (01) : 52 - 61
  • [47] Reaction monitoring in explorative organic synthesis using fiber-optical NIR spectroscopy and principal component analysis
    Bjorsvik, HR
    APPLIED SPECTROSCOPY, 1996, 50 (12) : 1541 - 1544
  • [48] Motion process monitoring using optical flow-based principal component analysis-independent component analysis method
    Fan, Song
    Zhang, Yingwei
    Zhang, Yunzhou
    Fang, Zheng
    ADVANCES IN MECHANICAL ENGINEERING, 2017, 9 (11)
  • [49] Mode dispersion analysis based on refractive index of graded-index multimode fiber
    Zhao, Yu
    Huang, SuJuan
    Yan, Cheng
    Shen, XinYu
    2018 ASIA COMMUNICATIONS AND PHOTONICS CONFERENCE (ACP), 2018,
  • [50] The Study of the Development of Rail Freight Based on Principal Component Analysis
    Zhang, Cheng
    Zhang, Guangsheng
    INNOVATION AND SUSTAINABILITY OF MODERN RAILWAY, 2012, : 862 - 866