Fractional corner charges in a two-dimensional superlattice Bose-Hubbard model

被引:13
|
作者
Bibo, Julian [1 ,2 ]
Lovas, Izabella [1 ,2 ]
You, Yizhi [3 ]
Grusdt, Fabian [2 ,4 ,5 ,6 ,7 ]
Pollmann, Frank [1 ,2 ]
机构
[1] Tech Univ Munich, Dept Phys, T42, D-85748 Garching, Germany
[2] Munich Ctr Quantum Sci & Technol MQCST, Schellingstr 4, D-80799 Munich, Germany
[3] Princeton Univ, Princeton Ctr Theoret Sci, Princeton, NJ 08544 USA
[4] Tech Univ Munich, Dept Phys, D-85748 Garching, Germany
[5] Tech Univ Munich, Inst Adv Study, D-85748 Garching, Germany
[6] Ludwig Maximilians Univ Munchen, Dept Phys, Theresienstr 37, D-80333 Munich, Germany
[7] Ludwig Maximilians Univ Munchen, Arnold Sommerfeld Ctr Theoret Phys ASC, Theresienstr 37, D-80333 Munich, Germany
基金
美国国家科学基金会; 欧洲研究理事会;
关键词
GAS;
D O I
10.1103/PhysRevB.102.041126
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We study higher order topology in the presence of strong interactions in a two-dimensional, experimentally accessible superlattice Bose-Hubbard model with alternating hoppings and strong on-site repulsion. We evaluate the phase diagram of the model around half-filling using the density renormalization group ansatz and find two gapped phases separated by a gapless superfluid region. We demonstrate that the gapped states realize two distinct higher order symmetry protected topological phases, which are protected by a combination of charge conservation and C-4 lattice symmetry. The phases are distinguished in terms of a many-body topological invariant and a quantized, experimentally accessible fractional corner charge that is robust against arbitrary, symmetry preserving edge manipulations. We support our claims by numerically studying the full counting statistics of the corner charge, finding a sharp distribution peaked around the quantized values. Our results allow for a direct comparison with experiments and represent a confirmation of theoretically predicted higher order topology in a strongly interacting system. Experimentally, the fractional corner charge can be observed in ultracold atomic settings using state of the art quantum gas microscopy.
引用
收藏
页数:5
相关论文
共 50 条
  • [31] Phases of the one-dimensional Bose-Hubbard model
    Kühner, TD
    Monien, H
    PHYSICAL REVIEW B, 1998, 58 (22) : R14741 - R14744
  • [32] Extended Bose-Hubbard model with incompressible states at fractional numbers
    Heiselberg, H
    PHYSICAL REVIEW A, 2006, 73 (01):
  • [33] Expansion dynamics in two-dimensional Bose-Hubbard lattices: Bose-Einstein condensate and thermal cloud
    Trujillo-Martinez, Mauricio
    Posazhennikova, Anna
    Kroha, Johann
    PHYSICAL REVIEW A, 2021, 103 (03)
  • [34] The dissipative Bose-Hubbard model
    Kordas, G.
    Witthaut, D.
    Buonsante, P.
    Vezzani, A.
    Burioni, R.
    Karanikas, A. I.
    Wimberger, S.
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2015, 224 (11): : 2127 - 2171
  • [35] Dipolar Bose-Hubbard model
    Lake, Ethan
    Hermele, Michael
    Senthil, T.
    PHYSICAL REVIEW B, 2022, 106 (06)
  • [36] A polaritonic two-component Bose-Hubbard model
    Hartmann, M. J.
    Brandao, F. G. S. L.
    Plenio, M. B.
    NEW JOURNAL OF PHYSICS, 2008, 10
  • [37] Phase diagram of the hard-core Bose-Hubbard model on a checkerboard superlattice
    Hen, Itay
    Iskin, M.
    Rigol, Marcos
    PHYSICAL REVIEW B, 2010, 81 (06)
  • [38] Quantum Monte Carlo Simulations of the Kosterlitz-Thouless Transition for Two-Dimensional Disordered Bose-Hubbard Model
    H. Kuroyanagi
    M. Tsukamoto
    M. Tsubota
    Journal of Low Temperature Physics, 2011, 162 : 609 - 616
  • [39] Quantum Monte Carlo Simulations of the Kosterlitz-Thouless Transition for Two-Dimensional Disordered Bose-Hubbard Model
    Kuroyanagi, H.
    Tsukamoto, M.
    Tsubota, M.
    JOURNAL OF LOW TEMPERATURE PHYSICS, 2011, 162 (5-6) : 609 - 616
  • [40] Dynamic properties of the one-dimensional Bose-Hubbard model
    Ejima, S.
    Fehske, H.
    Gebhard, F.
    EPL, 2011, 93 (03)