Splitting matter waves using an optimized standing-wave light-pulse sequence

被引:63
|
作者
Wu, SJ [1 ]
Wang, YJ
Diot, Q
Prentiss, M
机构
[1] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA
[2] Harvard Univ, Ctr Ultra Cold Atoms, Cambridge, MA 02138 USA
[3] Harvard Univ, Div Engn & Appl Sci, Cambridge, MA 02138 USA
[4] Univ Colorado, Dept Phys, Boulder, CO 80309 USA
[5] Natl Inst Stand & Technol, Joint Inst Lab Astrophys, Boulder, CO 80309 USA
来源
PHYSICAL REVIEW A | 2005年 / 71卷 / 04期
关键词
D O I
10.1103/PhysRevA.71.043602
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In a recent experiment (Wang , e-print cond-mat/0407689), it was observed that a sequence of two standing-wave square pulses can split a Bose-Einstein Condensate at rest into +/- 2hk diffraction orders with almost 100% efficiency. By truncating the Raman-Nath equations to a two-state model, we provide an intuitive picture that explains this double-square-pulse beam-splitter scheme. We further show it is possible to optimize a standing-wave multiple-square-pulse sequence to efficiently diffract an atom at rest to a symmetric superposition of +/- 2nhk diffraction orders with n>1. The approach is considered to be qualitatively different from the traditional light-pulse schemes in the Bragg or the Raman-Nath region, and can be extended to more complex atomic optical elements that produce various tailored output momentum states from a cold atom source.
引用
收藏
页数:7
相关论文
共 50 条
  • [41] Momentum transfer using chirped standing-wave fields: Bragg scattering
    Malinovsky, VS
    Berman, PR
    PHYSICAL REVIEW A, 2003, 68 (02):
  • [42] Optimization of standing-wave thermoacoustic refrigerator stack using genetic algorithm
    Peng, Yehui
    Feng, Heying
    Mao, Xiaoan
    INTERNATIONAL JOURNAL OF REFRIGERATION-REVUE INTERNATIONALE DU FROID, 2018, 92 : 246 - 255
  • [43] Transmission line modelling using wave equation standing-wave solutions as basis functions
    Tanskanen, Antti
    2007 EUROPEAN CONFERENCE ON CIRCUIT THEORY AND DESIGN, VOLS 1-3, 2007, : 659 - 662
  • [44] Momentum transfer using chirped standing-wave fields: Bragg scattering
    Malinovsky, Vladimir S.
    Berman, Paul R.
    Physical Review A - Atomic, Molecular, and Optical Physics, 2003, 68 (02): : 236101 - 236105
  • [45] Determination of Magnetomechanical Parameters of Materials using Standing-Wave Ultrasonic Method
    Bubulis, A.
    Stepanenko, D.
    Minchenya, V.
    Bogdanchuk, K.
    Stsepanenka, T.
    MECHANIKA 2013: PROCEEDINGS OF THE 18TH INTERNATIONAL CONFERENCE, 2013, : 53 - 57
  • [46] Simulation of a standing-wave thermoacoustic engine using compressible SIMPLE algorithm
    Zhang, Dongwei
    He, Yaling
    Wang, Yong
    Huang, Jing
    6TH INTERNATIONAL SYMPOSIUM ON MULTIPHASE FLOW, HEAT MASS TRANSFER AND ENERGY CONVERSION, 2010, 1207 : 939 - 944
  • [47] FREQUENCY-ANALYSIS OF A CONTROL ASSEMBLY USING STANDING-WAVE METHODS
    BOSI, DM
    TRANSACTIONS OF THE AMERICAN NUCLEAR SOCIETY, 1976, 24 (NOV19): : 352 - 353
  • [48] TEMPERATURE CONCENTRATION WAVES UNDER THE LIGHT-PULSE EFFECT ON SUPERCONDUCTOR WITH ITS BISTABLE RESPONSE
    BONDARENKO, OS
    POLYAKOV, SV
    TROFIMOV, VA
    PISMA V ZHURNAL TEKHNICHESKOI FIZIKI, 1992, 18 (16): : 24 - 28
  • [49] LIGHT-INDUCED VARIATION OF TEST ULTRASHORT PULSE POLARIZATION AS A METHOD FOR STUDYING COHERENT DIFFRACTION OF ATOM IN STANDING-WAVE RESONANT FIELD
    MURADYAN, AZ
    OPTIKA I SPEKTROSKOPIYA, 1991, 71 (06): : 1038 - 1043
  • [50] Nanolithography with metastable helium atoms in a high-power standing-wave light field
    Petra, SJH
    Feenstra, L
    Hogervorst, W
    Vassen, W
    APPLIED PHYSICS B-LASERS AND OPTICS, 2004, 78 (02): : 133 - 136