Splitting matter waves using an optimized standing-wave light-pulse sequence

被引:63
|
作者
Wu, SJ [1 ]
Wang, YJ
Diot, Q
Prentiss, M
机构
[1] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA
[2] Harvard Univ, Ctr Ultra Cold Atoms, Cambridge, MA 02138 USA
[3] Harvard Univ, Div Engn & Appl Sci, Cambridge, MA 02138 USA
[4] Univ Colorado, Dept Phys, Boulder, CO 80309 USA
[5] Natl Inst Stand & Technol, Joint Inst Lab Astrophys, Boulder, CO 80309 USA
来源
PHYSICAL REVIEW A | 2005年 / 71卷 / 04期
关键词
D O I
10.1103/PhysRevA.71.043602
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In a recent experiment (Wang , e-print cond-mat/0407689), it was observed that a sequence of two standing-wave square pulses can split a Bose-Einstein Condensate at rest into +/- 2hk diffraction orders with almost 100% efficiency. By truncating the Raman-Nath equations to a two-state model, we provide an intuitive picture that explains this double-square-pulse beam-splitter scheme. We further show it is possible to optimize a standing-wave multiple-square-pulse sequence to efficiently diffract an atom at rest to a symmetric superposition of +/- 2nhk diffraction orders with n>1. The approach is considered to be qualitatively different from the traditional light-pulse schemes in the Bragg or the Raman-Nath region, and can be extended to more complex atomic optical elements that produce various tailored output momentum states from a cold atom source.
引用
收藏
页数:7
相关论文
共 50 条
  • [11] Atomic motion in a standing-wave squeezed light field
    Parkins, A.S.
    Mueller, Rainer
    1996, Taylor & Francis Ltd, London, United Kingdom (43)
  • [12] Matter-wave chaos with a cold atom in a standing-wave laser field
    Prants, S. V.
    CHAOS SOLITONS & FRACTALS, 2010, 43 (1-12) : 1 - 7
  • [13] MEASUREMENT OF SEEBECK COEFFICIENT USING A LIGHT-PULSE
    WOOD, C
    ZOLTAN, D
    STAPFER, G
    REVIEW OF SCIENTIFIC INSTRUMENTS, 1985, 56 (05): : 719 - 722
  • [15] WIDE-BAND STANDING-WAVE LIGHT MODULATORS.
    Volkonskii, V.B.
    Golovkov, A.A.
    Goncharov, Yu.V.
    Kalinikos, D.A.
    Popov, Yu.V.
    Yakovlev, V.V.
    1978, 45 (07): : 449 - 451
  • [16] DEFLECTION OF BARIUM ATOMS BY A STANDING-WAVE LIGHT-FIELD
    EARLY, JW
    OPTICS COMMUNICATIONS, 1988, 65 (04) : 250 - 256
  • [17] Gravitational-wave detection with matter-wave interferometers based on standing light waves
    Dongfeng Gao
    Peng Ju
    Baocheng Zhang
    Mingsheng Zhan
    General Relativity and Gravitation, 2011, 43
  • [18] Gravitational-wave detection with matter-wave interferometers based on standing light waves
    Gao, Dongfeng
    Ju, Peng
    Zhang, Baocheng
    Zhan, Mingsheng
    GENERAL RELATIVITY AND GRAVITATION, 2011, 43 (07) : 2027 - 2036
  • [19] STANDING-WAVE PRESSURES DUE TO REGULAR AND RANDOM WAVES ON A VERTICAL WALL
    MALLAYACHARI, V
    SUNDAR, V
    OCEAN ENGINEERING, 1995, 22 (08) : 859 - 879
  • [20] Spectral engineering of photonic filters using mode splitting in silicon nanowire integrated standing-wave resonators
    Wu, Jiayang
    Moein, Tania
    Xu, Xingyuan
    Zhang, Yuning
    Moss, David J.
    SILICON PHOTONICS XIV, 2019, 10923