Negative Specific Heat in the Canonical Statistical Ensemble

被引:20
|
作者
Staniscia, F. [1 ,2 ]
Turchi, A. [3 ,4 ]
Fanelli, D. [4 ,5 ]
Chavanis, P. H. [6 ,7 ]
De Ninno, G. [2 ,8 ]
机构
[1] Univ Trieste, Dipartimento Fis, I-34127 Trieste, Italy
[2] Sincrotrone Trieste, Basovizza, Ts, Italy
[3] Univ Florence, Dipartimento Sistemi & Informat, I-50139 Florence, Italy
[4] Ist Nazl Fis Nucl, I-50139 Florence, Italy
[5] Univ Florence, Dipartimento Energet Sergio Stecco, I-50139 Florence, Italy
[6] Univ Toulouse, UPS, Phys Theor Lab, IRSAMC, F-31062 Toulouse, France
[7] CNRS, Phys Theor Lab, IRSAMC, F-31062 Toulouse, France
[8] Nova Gorica Univ, Dept Phys, Nova Gorica, Slovenia
关键词
STELLAR-SYSTEMS; HMF MODEL; RELAXATION; MECHANICS; STATES;
D O I
10.1103/PhysRevLett.105.010601
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
According to thermodynamics, the specific heat of Boltzmannian short-range interacting systems is a positive quantity. Less intuitive properties are instead displayed by systems characterized by long-range interactions. In that case, the sign of specific heat depends on the considered statistical ensemble: Negative specific heat can be found in isolated systems, which are studied in the framework of the microcanonical ensemble; on the other hand, it is generally recognized that a positive specific heat should always be measured in systems in contact with a thermal bath, for which the canonical ensemble is the appropriate one. We demonstrate that the latter assumption is not generally true: One can, in principle, measure negative specific heat also in the canonical ensemble if the system under scrutiny is non-Boltzmannian and/or out-of-equilibrium.
引用
收藏
页数:4
相关论文
共 50 条
  • [21] Modeling of the Psychophysical Response Curves Using the Grand Canonical Ensemble in Statistical Physics
    S. Knani
    M. Mathlouthi
    A. Ben Lamine
    Food Biophysics, 2007, 2 : 183 - 192
  • [22] REPRESENTATION OF ENTROPY FUNCTIONAL FOR A GRAND CANONICAL ENSEMBLE IN CLASSICAL STATISTICAL-MECHANICS
    FORTE, B
    SASTRI, CCA
    JOURNAL OF MATHEMATICAL PHYSICS, 1977, 18 (07) : 1299 - 1302
  • [23] Heat capacities of supercritical fluids via Grand Canonical ensemble simulations
    Stutzman, Lauren B.
    Escobedo, Fernando A.
    Tester, Jefferson W.
    MOLECULAR SIMULATION, 2018, 44 (02) : 147 - 155
  • [24] Negative heat capacity of small systems in the microcanonical ensemble
    Carignano, M. A.
    Gladich, I.
    EPL, 2010, 90 (06)
  • [25] Fluctuations in the canonical ensemble
    Begun, VV
    Gorenstein, MI
    Zozulya, OS
    PHYSICAL REVIEW C, 2005, 72 (01):
  • [26] MEANING OF THE CANONICAL ENSEMBLE
    SORKIN, R
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1979, 18 (05) : 309 - 321
  • [27] The quantum canonical ensemble
    Brody, DC
    Hughston, LP
    JOURNAL OF MATHEMATICAL PHYSICS, 1998, 39 (12) : 6502 - 6508
  • [28] Quantization of the canonical ensemble
    Lederer, M
    PHYSICA A, 2000, 286 (3-4): : 627 - 637
  • [29] Demography and the canonical ensemble
    Smith, JDH
    MATHEMATICAL BIOSCIENCES, 1998, 153 (02) : 151 - 161
  • [30] IS THERE A CANONICAL NONEQUILIBRIUM ENSEMBLE
    PENROSE, O
    COVENEY, PV
    PROCEEDINGS OF THE ROYAL SOCIETY-MATHEMATICAL AND PHYSICAL SCIENCES, 1994, 447 (1931): : 631 - 646