Negative Specific Heat in the Canonical Statistical Ensemble

被引:20
|
作者
Staniscia, F. [1 ,2 ]
Turchi, A. [3 ,4 ]
Fanelli, D. [4 ,5 ]
Chavanis, P. H. [6 ,7 ]
De Ninno, G. [2 ,8 ]
机构
[1] Univ Trieste, Dipartimento Fis, I-34127 Trieste, Italy
[2] Sincrotrone Trieste, Basovizza, Ts, Italy
[3] Univ Florence, Dipartimento Sistemi & Informat, I-50139 Florence, Italy
[4] Ist Nazl Fis Nucl, I-50139 Florence, Italy
[5] Univ Florence, Dipartimento Energet Sergio Stecco, I-50139 Florence, Italy
[6] Univ Toulouse, UPS, Phys Theor Lab, IRSAMC, F-31062 Toulouse, France
[7] CNRS, Phys Theor Lab, IRSAMC, F-31062 Toulouse, France
[8] Nova Gorica Univ, Dept Phys, Nova Gorica, Slovenia
关键词
STELLAR-SYSTEMS; HMF MODEL; RELAXATION; MECHANICS; STATES;
D O I
10.1103/PhysRevLett.105.010601
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
According to thermodynamics, the specific heat of Boltzmannian short-range interacting systems is a positive quantity. Less intuitive properties are instead displayed by systems characterized by long-range interactions. In that case, the sign of specific heat depends on the considered statistical ensemble: Negative specific heat can be found in isolated systems, which are studied in the framework of the microcanonical ensemble; on the other hand, it is generally recognized that a positive specific heat should always be measured in systems in contact with a thermal bath, for which the canonical ensemble is the appropriate one. We demonstrate that the latter assumption is not generally true: One can, in principle, measure negative specific heat also in the canonical ensemble if the system under scrutiny is non-Boltzmannian and/or out-of-equilibrium.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] Negative specific heat in the canonical statistical ensemble
    Staniscia, F.
    Turchi, A.
    Fanelli, D.
    Chavanis, P. H.
    De Ninno, G.
    NON-EQUILIBRIUM STATISTICAL PHYSICS TODAY, 2011, 1332 : 297 - 297
  • [2] Classical statistical mechanics in the grand canonical ensemble
    Stroeker, Philipp
    Meier, Karsten
    PHYSICAL REVIEW E, 2021, 104 (01)
  • [3] Canonical ensemble in non-extensive statistical mechanics
    Ruseckas, Julius
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2016, 447 : 85 - 99
  • [4] STATISTICAL MECHANICS OF PARALLEL HARD SQUARES IN CANONICAL ENSEMBLE
    REE, FH
    REE, T
    JOURNAL OF CHEMICAL PHYSICS, 1972, 56 (11): : 5434 - &
  • [5] THE DERIVATION OF STATISTICAL EXPRESSIONS FROM GIBBS CANONICAL ENSEMBLE
    ANSBACHER, F
    EHRENBERG, W
    PHILOSOPHICAL MAGAZINE, 1949, 40 (305): : 626 - 631
  • [6] Quantum statistical model of nuclear multifragmentation in the canonical ensemble method
    Parvan, AS
    Toneev, VD
    Ploszajczak, M
    NUCLEAR PHYSICS A, 2000, 676 : 409 - 451
  • [7] Statistical hadronization and hadronic micro-canonical ensemble II
    Becattini, F
    Ferroni, L
    EUROPEAN PHYSICAL JOURNAL C, 2004, 38 (02): : 225 - 246
  • [8] Extensive statistical mechanics based on nonadditive entropy: Canonical ensemble
    Parvan, A. S.
    PHYSICS LETTERS A, 2006, 360 (01) : 26 - 34
  • [9] Statistical mechanics of Fermi-Pasta-Ulam chains with the canonical ensemble
    Demirel, Melik C.
    Sayar, Mehmet
    Atilgan, Ali R.
    Physical Review E. Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 1997, 55 (3-B):
  • [10] Statistical mechanics of Fermi-Pasta-Ulam chains with the canonical ensemble
    Demirel, MC
    Sayar, M
    Atilgan, AR
    PHYSICAL REVIEW E, 1997, 55 (03) : 3727 - 3730