PbS quantum dot solids and quantum dot size gradient layers for photovoltaics

被引:1
|
作者
Zvaigzne, M. [1 ]
Aleksandrov, A. [2 ]
Goltyapin, Y. [1 ]
Nikitenko, V [1 ]
Chistyakov, A. [1 ]
Tameev, A. [2 ]
机构
[1] Natl Res Nucl Univ MEPhI, Moscow Engn Phys Inst, Kashirskoe Shosse 31, Moscow, Russia
[2] Russian Acad Sci, Frumkin Inst Phys Chem & Electrochem, IPCE RAS, Leninsky Prospect 31,Bld 4, Moscow 119071, Russia
来源
基金
俄罗斯基础研究基金会;
关键词
PbS; quantum dots; surface ligands; charge carriers; organic semiconductors; ELECTRICAL-PROPERTIES; OPTICAL-PROPERTIES; SURFACE LIGANDS; TRANSPORT; PHOTOCONDUCTIVITY;
D O I
10.1117/12.2502737
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Quantum dot (QD) solids are promising materials for the development of optoelectronic devices, in particular solar cells. The efficiency of such devices depends strongly on the energetic disorder within QD solid due to QD size variance and matching the energy of the components. Here, we studied optical properties, such as absorption, luminescence, time resolved luminescence spectra, and electrical conductivity of QD solid layers made of PbS QDs of different sizes (2.9 nm, 4.1 nm and 5.1 nm) as well as QD solid layers with QD size gradient. We discussed the efficiency of energy and charge transfer in layers with QD size gradient by performing theoretical estimates of the appropriate parameters. Additionally, we fabricated photovoltaic solar cells based on the QD solids and investigated an influence the energy disorder on the conductivity and the efficiency of solar cells.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Liquid contacting as a method to study photovoltaic properties of PbS quantum dot solids
    Dereviankin, V. A.
    Johansson, E.
    JOURNAL OF MATERIALS CHEMISTRY A, 2016, 4 (23) : 9009 - 9013
  • [32] Charge Carrier Hopping Dynamics in Homogeneously Broadened PbS Quantum Dot Solids
    Gilmore, Rachel H.
    Lee, Elizabeth M. Y.
    Weidman, Mark C.
    Willard, Adam P.
    Tisdale, William A.
    NANO LETTERS, 2017, 17 (02) : 893 - 901
  • [33] Understanding photovoltaic properties of PbS quantum dot solids via solution contacting
    Dereviankin, Vitalii
    Johansson, Erik
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2016, 252
  • [34] In situ synergistic halogen passivation of semiconducting PbS quantum dot inks for efficient photovoltaics
    Ding, Xiaobo
    Wen, Xin
    Kawata, Yuto
    Liu, Yang
    Shi, Guozheng
    ben Ghazi, Refka
    Sun, Xiang
    Zhu, Yujie
    Wu, Hao
    Gao, Haotian
    Shen, Qing
    Liu, Zeke
    Ma, Wanli
    NANOSCALE, 2024, 16 (10) : 5115 - 5122
  • [35] Graphene Doping Improved Device Performance of ZnMgO/PbS Colloidal Quantum Dot Photovoltaics
    Hu, Long
    Li, Deng-Bing
    Gao, Liang
    Tan, Hua
    Chen, Chao
    Li, Kanghua
    Li, Min
    Han, Jun-Bo
    Song, Haisheng
    Liu, Huan
    Tang, Jiang
    ADVANCED FUNCTIONAL MATERIALS, 2016, 26 (12) : 1899 - 1907
  • [36] Dependence of quantum dot solar cell parameters on the number of quantum dot layers
    Gatissa, Tewodros Adaro
    Debela, Teshome Senbeta
    Ali, Belayneh Mesfin
    AIP ADVANCES, 2023, 13 (07)
  • [37] Bandlike Transport in PbS Quantum Dot Superlattices with Quantum Confinement
    Liu, Yun
    Peard, Nolan
    Grossman, Jeffrey C.
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2019, 10 (13): : 3756 - 3762
  • [38] The SERS signature of PbS quantum dot oxidation
    Stadelmann, Kathrin
    Elizabeth, Amala
    Sabanes, Natalia Martin
    Domke, Katrin F.
    VIBRATIONAL SPECTROSCOPY, 2017, 91 : 157 - 162
  • [39] Designing quantum dots and quantum-dot solids
    Bryant, GW
    Jaskólski, W
    PHYSICA E, 2001, 11 (2-3): : 72 - 77
  • [40] Photoconductivity in CdSe quantum dot solids
    Leatherdale, CA
    Kagan, CR
    Kastner, MA
    Bawendi, MG
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1997, 213 : 319 - PHYS