ROTA-BAXTER OPERATORS AND NON-SKEW-SYMMETRIC SOLUTIONS OF THE CLASSICAL YANG-BAXTER EQUATION ON QUADRATIC LIE ALGEBRAS

被引:3
|
作者
Goncharov, M. P. [1 ,2 ]
机构
[1] Sobolev Inst Math, 4 Koptyuga Ave, Novosibirsk 630090, Russia
[2] Novosibirsk State Univ, Dept Mech & Math, 1 Pirogova Str, Novosibirsk 630090, Russia
关键词
Rota-Baxter operator; quadratic Lie algebra; non-associative bialgebra; classical Yang-Baxter equation; BIALGEBRAS;
D O I
10.33048/semi.2019.16.149
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study possible connections between Rota-Baxter operators of non-zero weight and non-skew-symmetric solutions of the classical Yang-Baxter equation on finite-dimensional quadratic Lie algebras. The particular attention is made to the case when for a solution r the element r + tau (r) is L-invariant.
引用
收藏
页码:2098 / 2109
页数:12
相关论文
共 50 条
  • [31] Extending Structures of Rota-Baxter Lie Algebras
    Peng, Xiao-song
    Zhang, Yi
    JOURNAL OF LIE THEORY, 2024, 34 (04) : 753 - 772
  • [32] ON ROTA-BAXTER LIE 2-ALGEBRAS
    Zhang, Shilong
    Liu, Jiefeng
    THEORY AND APPLICATIONS OF CATEGORIES, 2023, 39 : 545 - 566
  • [33] Integration and geometrization of Rota-Baxter Lie algebras
    Guo, Li
    Lang, Honglei
    Sheng, Yunhe
    ADVANCES IN MATHEMATICS, 2021, 387
  • [34] Existence of solutions of the classical Yang-Baxter equation for a real Lie algebra
    Feldvoss, J
    ABHANDLUNGEN AUS DEM MATHEMATISCHEN SEMINAR DER UNIVERSITAT HAMBURG, 2001, 71 (1): : 297 - 304
  • [35] Rota–Baxter Operators on Quadratic Algebras
    Pilar Benito
    Vsevolod Gubarev
    Alexander Pozhidaev
    Mediterranean Journal of Mathematics, 2018, 15
  • [36] GRADED LIE-ALGEBRAS IN THE YANG-BAXTER EQUATION
    AVAN, J
    PHYSICS LETTERS B, 1990, 245 (3-4) : 491 - 496
  • [37] Deformations and Homotopy of Rota-Baxter Operators and O-Operators on Lie Algebras
    Tang, Rong
    Bai, Chengming
    Guo, Li
    Sheng, Yunhe
    PHYSICS OF PARTICLES AND NUCLEI, 2020, 51 (04) : 393 - 398
  • [38] The classical dynamical Yang-Baxter equation and Lie algebroids
    Bangoura, M
    Kosmann-Schwarzbach, Y
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1998, 327 (06): : 541 - 546
  • [39] Factorizable Lie Bialgebras, Quadratic Rota–Baxter Lie Algebras and Rota–Baxter Lie Bialgebras
    Honglei Lang
    Yunhe Sheng
    Communications in Mathematical Physics, 2023, 397 : 763 - 791
  • [40] Subprime solutions of the classical Yang-Baxter equation
    Johnson, Garrett
    JOURNAL OF ALGEBRA, 2019, 517 : 1 - 18