Some Liouville theorems for Henon type elliptic equations

被引:82
|
作者
Wang, Chao [2 ]
Ye, Dong [1 ]
机构
[1] Univ Metz, Dept Math, UMR 7122, F-57045 Metz, France
[2] Univ Cergy Pontoise, Dept Math, UMR 8088, F-95302 Cergy Pontoise, France
关键词
Liouville theorem; Henon equation; Stability; Finite Morse index solution; POSITIVE SOLUTIONS; DELTA-U; CLASSIFICATION; STABILITY; E(U);
D O I
10.1016/j.jfa.2011.11.017
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate here the nonlinear elliptic equations -Delta u = vertical bar x vertical bar(alpha)e(u) and -Delta u = vertical bar x vertical bar(alpha)vertical bar u vertical bar(p-1)u with alpha > -2, p > 1 and N >= 2. In particular, we prove some Liouville type theorems for weak solutions with finite Morse index in the low dimensional Euclidean spaces or half spaces. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:1705 / 1727
页数:23
相关论文
共 50 条
  • [31] Some remarks on Liouville type results for quasilinear elliptic equations
    Dancer, EN
    Du, YH
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 131 (06) : 1891 - 1899
  • [32] LIOUVILLE TYPE THEOREMS FOR KIRCHHOFF SUB-ELLIPTIC EQUATIONS INVOLVING Δλ-OPERATORS
    Thi Thu Huong Nguyen
    Dao Trong Quyet
    Thi Hien Anh Vu
    TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2023, 62 (01) : 327 - 340
  • [33] Some Liouville theorems for quasilinear elliptic inequalities
    G. Caristi
    E. Mitidieri
    S. I. Pohozaev
    Doklady Mathematics, 2009, 79 : 118 - 124
  • [34] Liouville theorems on some indefinite equations
    Zhu, MJ
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1999, 129 : 649 - 661
  • [35] Optimal Liouville theorems for supersolutions of elliptic equations with the Laplacian
    Alarcon, Salomon
    Garcia-Melian, Jorge
    Quaas, Alexander
    ANNALI DELLA SCUOLA NORMALE SUPERIORE DI PISA-CLASSE DI SCIENZE, 2016, 16 (01) : 129 - 158
  • [36] Liouville theorems for radial solutions of semilinear elliptic equations
    Garcia-Melian, Jorge
    Iturriaga, Leonelo
    Quaas, Alexander
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2019, 64 (06) : 933 - 949
  • [37] Liouville theorems for nonlinear elliptic equations on Riemannian manifolds
    Nguyen Thac Dung
    Pham Duc Thoan
    Nguyen Dang Tuyen
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2021, 496 (01)
  • [38] ON SOME LIOUVILLE TYPE THEOREMS FOR THE COMPRESSIBLE NAVIER-STOKES EQUATIONS
    Li, Dong
    Yu, Xinwei
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2014, 34 (11) : 4719 - 4733
  • [39] Liouville-type theorems for fractional Hardy-Henon systems
    Li, Kui
    Yu, Meng
    Zhang, Zhitao
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2024, 31 (01):
  • [40] LIOUVILLE-TYPE THEOREMS FOR STABLE SOLUTIONS OF SINGULAR QUASILINEAR ELLIPTIC EQUATIONS IN RN
    Chen, Caisheng
    Song, Hongxue
    Yang, Hongwei
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2018,