Fa-FRAME AND RIESZ SEQUENCES IN L2(R+)

被引:5
|
作者
Li, Yun-Zhang [1 ]
Zhang, Wei [1 ,2 ]
机构
[1] Beijing Univ Technol, Coll Appl Sci, Beijing 100124, Peoples R China
[2] Henan Univ Econ & Law, Sch Math & Informat Sci, Zhengzhou 450046, Henan, Peoples R China
来源
OPERATORS AND MATRICES | 2018年 / 12卷 / 04期
基金
中国国家自然科学基金;
关键词
Frame; F-a-frame; F-a-Bessel sequence; F-a-Riesz sequence; Parseval; DUAL WAVELET FRAMES; AFFINE SYSTEMS; BASES;
D O I
10.7153/oam-2018-12-63
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In application, L-2(R+) can model casual signal space. This paper addresses the F-a-frame theory in L-2(R+). The notion of F-a-frame for L-2(R+) is somewhat like but distinct from that of frame. One of its special cases is a dilation-and-modulation frame for L-2(R+). By intuition, F-a-frames have properties similar to usual frames. But they are nontrivial. In this paper, we introduce the notions of F-a-Bessel sequence and F-a-frame sequence in L-2(R+). We characterize F-a-Bessel sequences, frame sequences and Riesz sequences, establish the links between F-a-Bessel sequences (F-a-frame sequences) and usual Bessel sequences (frame sequences), between F-a-orthonormal sequences and Parseval F-a-frames, and obtain an expansion with respect to Parseval F-a-frame sequences.
引用
收藏
页码:1043 / 1062
页数:20
相关论文
共 50 条
  • [41] Parseval frame wavelet multipliers in L2(Rd)
    Li, Zhongyan
    Shi, Xianliang
    [J]. CHINESE ANNALS OF MATHEMATICS SERIES B, 2012, 33 (06) : 949 - 960
  • [42] Localization and Completeness in L2(R)
    Olevskii, Victor
    [J]. CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2015, 58 (01): : 144 - 149
  • [43] Two versions of pseudo-differential operators involving the Kontorovich-Lebedev transform in L2(R+;dx/x)
    Prasad, Akhilesh
    Mandal, Upain K.
    [J]. FORUM MATHEMATICUM, 2018, 30 (01) : 31 - 42
  • [44] GABOR FRAMES IN l2(Z) FROM GABOR FRAMES IN L2(R)
    Thomas, Jineesh
    Namboothiri, Madhavan N. M.
    Varghese, Eldo
    [J]. KOREAN JOURNAL OF MATHEMATICS, 2020, 28 (04): : 877 - 888
  • [45] Wiener-Hopf operators on L2w(R+)
    Petkova, V
    [J]. ARCHIV DER MATHEMATIK, 2005, 84 (04) : 311 - 324
  • [46] SPECTRA OF THE TRANSLATIONS AND WIENER-HOPF OPERATORS ON Lω2(R+)
    Petkova, Violeta
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2014, 142 (07) : 2491 - 2505
  • [47] APPROXIMATE PROPERTIES IN L2 OF CERTAIN FUNCTIONAL SEQUENCES
    KAZMIN, YA
    [J]. MATHEMATICAL NOTES, 1988, 43 (5-6) : 342 - 348
  • [48] L2 Polish developmental sequences in an intercomprehension context
    Saturno, Jacopo
    [J]. EUROPEAN JOURNAL OF APPLIED LINGUISTICS, 2023, : 374 - 409
  • [49] Continuous and localized Riesz bases for L2 spaces defined by Muckenhoupt weights
    Aimar, Hugo
    Ramos, Wilfredo A.
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 430 (01) : 417 - 427
  • [50] L2 NORM INEQUALITY WITH POWER WEIGHTS FOR THE MAXIMAL RIESZ SPHERICAL MEANS
    LU, SZ
    [J]. KEXUE TONGBAO, 1986, 31 (16): : 1087 - 1091