Parseval frame wavelet multipliers in L2(Rd)

被引:7
|
作者
Li, Zhongyan [1 ,2 ]
Shi, Xianliang [1 ]
机构
[1] Hunan Normal Univ, Minist Educ China, Coll Math & Comp Sci, Key Lab High Performance Comp & Stochast Informat, Changsha 410081, Hunan, Peoples R China
[2] N China Elect Power Univ, Dept Math & Phys, Beijing 102206, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Parseval frame wavelet; Wavelet multiplier; Frame multiresolution analysis; MULTIRESOLUTION ANALYSIS; MRA WAVELETS;
D O I
10.1007/s11401-012-0739-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let A be a d x d real expansive matrix. An A-dilation Parseval frame wavelet is a function psi a L (2)(a"e (d) ), such that the set forms a Parseval frame for L (2)(a"e (d) ). A measurable function f is called an A-dilation Parseval frame wavelet multiplier if the inverse Fourier transform of d psi aOE integral is an A-dilation Parseval frame wavelet whenever psi is an A-dilation Parseval frame wavelet, where psi aOE integral denotes the Fourier transform of psi. In this paper, the authors completely characterize all A-dilation Parseval frame wavelet multipliers for any integral expansive matrix A with |det(A)| = 2. As an application, the path-connectivity of the set of all A-dilation Parseval frame wavelets with a frame MRA in L (2)(a"e (d) ) is discussed.
引用
收藏
页码:949 / 960
页数:12
相关论文
共 50 条
  • [1] Parseval frame wavelet multipliers in L2(ℝd)
    Zhongyan Li
    Xianliang Shi
    [J]. Chinese Annals of Mathematics, Series B, 2012, 33 : 949 - 960
  • [2] Parseval Frame Wavelet Multipliers in L~2(R~d)
    Zhongyan LI
    Xianliang SHI
    [J]. Chinese Annals of Mathematics,Series B, 2012, 33 (06) : 949 - 960
  • [3] MRA Parseval Frame Wavelets and Their Multipliers in L2(Rn)
    Wu Guochang
    Yang Xiaohui
    Liu Zhanwei
    [J]. MATHEMATICAL PROBLEMS IN ENGINEERING, 2009, 2009
  • [4] MRA PARSEVAL FRAME MULTIWAVELETS IN L2(Rd)
    Liu, Zhanwei
    Mu, Xiaomin
    Wu, Guochang
    [J]. BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2012, 38 (04) : 1021 - 1045
  • [5] Intrinsic s-elementary Parseval frame multiwavelets in L2(Rd)
    Li, Zhongyan
    Dai, Xingde
    Diao, Yuanan
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 367 (02) : 677 - 684
  • [6] SMOOTH PARSEVAL FRAMES FOR L2(R) AND GENERALIZATIONS TO L2(Rd)
    King, Emily J.
    [J]. INTERNATIONAL JOURNAL OF WAVELETS MULTIRESOLUTION AND INFORMATION PROCESSING, 2013, 11 (06)
  • [7] WAVELET FRAMES IN L2 (Rd)
    Poumai, Khole Timothy
    Kaushik, Shiv Kumar
    [J]. ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2020, 50 (02) : 677 - 692
  • [8] Dyadic bivariate wavelet multipliers in L2(ℝ2)
    Zhong Yan Li
    Xian Liang Shi
    [J]. Acta Mathematica Sinica, English Series, 2011, 27 : 1489 - 1500
  • [9] Frame wavelet set and frequency frame wavelet in L2(Rn)
    Yadav, G. C. S.
    Kumar, Arun
    [J]. JOURNAL OF PSEUDO-DIFFERENTIAL OPERATORS AND APPLICATIONS, 2023, 14 (02)
  • [10] Two families of compactly supported Parseval framelets in L2(Rd)
    San Antolin, A.
    Zalik, R. A.
    [J]. APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2022, 60 : 512 - 527