Parseval Frame Wavelet Multipliers in L~2(R~d)

被引:0
|
作者
Zhongyan LI [1 ,2 ]
Xianliang SHI [1 ]
机构
[1] College of Mathematics and Computer Science,Key Laboratory of High Performance Computing and Stochastic Information Processing (HPCSIP),Ministry of Education of China,Hunan Normal Univer-sity
[2] Department of Mathematics and Physics,North China Electric PowerUniversity
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Parseval frame wavelet; Wavelet multiplier; Frame multiresolution analysis;
D O I
暂无
中图分类号
O174.2 [傅里叶分析(经典调和分析)];
学科分类号
070104 ;
摘要
Let A be a d×d real expansive matrix.An A-dilation Parseval frame wavelet is a function ψ∈L2(Rd),such that the set {|det A|n/2ψ(Ant-l):n∈Z,l∈Zd} forms a Parseval frame for L2 (R~d).A measurable function f is called an A-dilation Parseval frame wavelet multiplier if the inverse Fourier transform of f■ is an A-dilation Parseval frame wavelet whenever ψ is an A-dilation Parseval frame wavelet,where ■ denotes the Fourier transform of ψ.In this paper,the authors completely characterize all A-dilation Parseval frame wavelet multipliers for any integral expansive matrix A with |det(A)|=2.As an application,the path-connectivity of the set of all A-dilation Parseval frame wavelets with a frame MRA in L2(Rd) is discussed.
引用
收藏
页码:949 / 960
页数:12
相关论文
共 50 条
  • [1] Parseval frame wavelet multipliers in L2(ℝd)
    Zhongyan Li
    Xianliang Shi
    [J]. Chinese Annals of Mathematics, Series B, 2012, 33 : 949 - 960
  • [2] Parseval frame wavelet multipliers in L2(Rd)
    Li, Zhongyan
    Shi, Xianliang
    [J]. CHINESE ANNALS OF MATHEMATICS SERIES B, 2012, 33 (06) : 949 - 960
  • [3] MRA Parseval Frame Wavelets and Their Multipliers in L2(Rn)
    Wu Guochang
    Yang Xiaohui
    Liu Zhanwei
    [J]. MATHEMATICAL PROBLEMS IN ENGINEERING, 2009, 2009
  • [4] Some Characterizations of Parseval Frame Wavelet
    Wu, Guochang
    Wang, Junmin
    [J]. PROCEEDINGS OF THE 2009 INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND NATURAL COMPUTING, VOL II, 2009, : 530 - 533
  • [5] Gabor frame multipliers and Parseval duals on the half real line
    Yang, Ming
    Li, Yun-Zhang
    [J]. INTERNATIONAL JOURNAL OF WAVELETS MULTIRESOLUTION AND INFORMATION PROCESSING, 2024, 22 (04)
  • [6] Matrix Fourier multipliers for Parseval multi-wavelet frames
    Li, Zhongyan
    Han, Deguang
    [J]. APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2013, 35 (03) : 407 - 418
  • [7] Dyadic bivariate wavelet multipliers in L2(R2)
    Li, Zhong Yan
    Shi, Xian Liang
    [J]. ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2011, 27 (08) : 1489 - 1500
  • [8] Functional Matrix Multipliers for Parseval Gabor Multi-frame Generators
    Li, Zhongyan
    Han, Deguang
    [J]. ACTA APPLICANDAE MATHEMATICAE, 2019, 160 (01) : 53 - 65
  • [9] MRA PARSEVAL FRAME MULTIWAVELETS IN L2(Rd)
    Liu, Zhanwei
    Mu, Xiaomin
    Wu, Guochang
    [J]. BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2012, 38 (04) : 1021 - 1045
  • [10] Functional Matrix Multipliers for Parseval Gabor Multi-frame Generators
    Zhongyan Li
    Deguang Han
    [J]. Acta Applicandae Mathematicae, 2019, 160 : 53 - 65