Mapping Charge Percolation in Flowable Electrodes Used in Capacitive Deionization

被引:28
|
作者
Dixit, Marm B. [1 ]
Moreno, Daniel [2 ]
Xiao, Xianghui [3 ]
Hatzell, Marta C. [2 ]
Hatzell, Kelsey B. [1 ]
机构
[1] Vanderbilt Univ, Dept Mech Engn, Nashville, TN 37203 USA
[2] Georgia Inst Technol, George W Woodruff Sch Mech Engn, Atlanta, GA 30313 USA
[3] Brookhaven Natl Lab, Natl Synchrotron Light Source II, Upton, NY 11973 USA
来源
ACS MATERIALS LETTERS | 2019年 / 1卷 / 01期
基金
美国国家科学基金会;
关键词
SUSPENSION ELECTRODES;
D O I
10.1021/acsmaterialslett.9b00106
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Electrical percolation in flow electrode capacitive deionization is critical to mitigate electronic resistance and maximize ion electrosorption. It is experimentally challenging to characterize mass and charge transfer phenomena in flow electrodes with space and time dimensions. Here, we demonstrate a way to resolve charge percolation pathways at sub-micron resolutions using synchrotron X-ray tomography and computational techniques. Three-dimensional reconstructed images provide a means to measure important micro- and mesoscale electrode properties, such as pore-size distribution, aggregation size, and percolation properties. Developing this microstructural understanding of flow-electrodes is necessary to understand how transport limitations impact separations performance and to inform operating conditions at the technology level (flow regimes).
引用
收藏
页码:71 / 76
页数:11
相关论文
共 50 条
  • [21] Precise manipulation of the charge percolation networks of flow-electrode capacitive deionization using a pulsed magnetic field
    Xu, Longqian
    Peng, Shuai
    Wu, Ke
    Tang, Liang
    Wu, Minghong
    Zong, Yang
    Mao, Yunfeng
    Wu, Deli
    WATER RESEARCH, 2022, 222
  • [22] Engineering strategies toward electrodes stabilization in capacitive deionization
    Gao, Ming
    Chen, Wenqing
    COORDINATION CHEMISTRY REVIEWS, 2024, 505
  • [23] Attractive forces in microporous carbon electrodes for capacitive deionization
    Biesheuvel, P. M.
    Porada, S.
    Levi, M.
    Bazant, M. Z.
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2014, 18 (05) : 1365 - 1376
  • [24] Fabrication of mesoporous graphene electrodes with enhanced capacitive deionization
    Gu, Xiaoyu
    Hu, Meng
    Du, Zhengshan
    Huang, Jian
    Wang, Chaoyang
    ELECTROCHIMICA ACTA, 2015, 182 : 183 - 191
  • [25] Continuous capacitive deionization with regenerative rotating film electrodes
    Dermentzis, Konstantinos
    Wessner, Wolfgang
    ELECTROCHEMISTRY COMMUNICATIONS, 2018, 92 : 5 - 8
  • [26] Attractive forces in microporous carbon electrodes for capacitive deionization
    P. M. Biesheuvel
    S. Porada
    M. Levi
    M. Z. Bazant
    Journal of Solid State Electrochemistry, 2014, 18 : 1365 - 1376
  • [27] Sustainable processing of electrodes for membrane capacitive deionization (MCDI)
    McNair, Robert
    Szekely, Gyorgy
    Dryfe, Robert A. W.
    JOURNAL OF CLEANER PRODUCTION, 2022, 342
  • [28] Faradaic Electrodes Open a New Era for Capacitive Deionization
    Li, Qian
    Zheng, Yun
    Xiao, Dengji
    Or, Tyler
    Gao, Rui
    Li, Zhaoqiang
    Feng, Ming
    Shui, Lingling
    Zhou, Guofu
    Wang, Xin
    Chen, Zhongwei
    ADVANCED SCIENCE, 2020, 7 (22)
  • [29] Novel Graphene-Like Electrodes for Capacitive Deionization
    Li, Haibo
    Zou, Linda
    Pan, Likun
    Sun, Zhuo
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2010, 44 (22) : 8692 - 8697
  • [30] Graphene-containing flowable electrodes for capacitive energy storage
    Boota, M.
    Hatzell, K. B.
    Alhabeb, M.
    Kumbur, E. C.
    Gogotsi, Y.
    CARBON, 2015, 92 : 142 - 149