Attractive forces in microporous carbon electrodes for capacitive deionization

被引:0
|
作者
P. M. Biesheuvel
S. Porada
M. Levi
M. Z. Bazant
机构
[1] Wetsus,Laboratory of Physical Chemistry and Colloid Science
[2] Centre of Excellence for Sustainable Water Technology,Department of Environmental Technology
[3] Wageningen University,Department of Chemistry
[4] Wageningen University,Department of Chemical Engineering
[5] Bar-Ilan University,Department of Mathematics
[6] Massachusetts Institute of Technology,undefined
[7] Massachusetts Institute of Technology,undefined
关键词
Cell Voltage; Porous Electrode; Activate Carbon Powder; Image Force; Charge Efficiency;
D O I
暂无
中图分类号
学科分类号
摘要
The recently developed modified Donnan (mD) model provides a simple and useful description of the electrical double layer in microporous carbon electrodes, suitable for incorporation in porous electrode theory. By postulating an attractive excess chemical potential for each ion in the micropores that is inversely proportional to the total ion concentration, we show that experimental data for capacitive deionization (CDI) can be accurately predicted over a wide range of applied voltages and salt concentrations. Since the ion spacing and Bjerrum length are each comparable to the micropore size (few nanometers), we postulate that the attraction results from fluctuating bare Coulomb interactions between individual ions and the metallic pore surfaces (image forces) that are not captured by mean-field theories, such as the Poisson-Boltzmann-Stern model or its mathematical limit for overlapping double layers, the Donnan model. Using reasonable estimates of the micropore permittivity and mean size (and no other fitting parameters), we propose a simple theory that predicts the attractive chemical potential inferred from experiments. As additional evidence for attractive forces, we present data for salt adsorption in uncharged microporous carbons, also predicted by the theory.
引用
收藏
页码:1365 / 1376
页数:11
相关论文
共 50 条
  • [1] Attractive forces in microporous carbon electrodes for capacitive deionization
    Biesheuvel, P. M.
    Porada, S.
    Levi, M.
    Bazant, M. Z.
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2014, 18 (05) : 1365 - 1376
  • [2] Water Desalination Using Capacitive Deionization with Microporous Carbon Electrodes
    Porada, S.
    Weinstein, L.
    Dash, R.
    van der Wal, A.
    Bryjak, M.
    Gogotsi, Y.
    Biesheuvel, P. M.
    ACS APPLIED MATERIALS & INTERFACES, 2012, 4 (03) : 1194 - 1199
  • [3] Carbon electrodes for capacitive deionization
    Huang, Zheng-Hong
    Yang, Zhiyu
    Kang, Feiyu
    Inagaki, Michio
    JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (02) : 470 - 496
  • [4] Voltage-Based Stabilization of Microporous Carbon Electrodes for Inverted Capacitive Deionization
    Gao, X.
    Omosebi, A.
    Landon, J.
    Liu, K.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2018, 122 (02): : 1158 - 1168
  • [5] Mesoporous Carbon Electrodes for Capacitive Deionization
    Lee, Dong-Ju
    Park, Jin-Soo
    JOURNAL OF THE KOREAN ELECTROCHEMICAL SOCIETY, 2014, 17 (01): : 57 - 64
  • [6] Frontiers of carbon materials as capacitive deionization electrodes
    Li, Yuanyuan
    Chen, Nan
    Li, Zengling
    Shao, Huibo
    Qu, Liangti
    DALTON TRANSACTIONS, 2020, 49 (16) : 5006 - 5014
  • [7] A comparative study on capacitive deionization and membrane capacitive deionization with powdered activate carbon as electrodes
    Wen, Qinxue
    Yang, Hong
    Zhang, Huichao
    Chen, Zhiqiang
    Harbin Gongye Daxue Xuebao/Journal of Harbin Institute of Technology, 2014, 46 (06): : 55 - 59
  • [8] Capacitive Deionization of NaCl Solutions with Modified Activated Carbon Electrodes
    Villar, Isabel
    Roldan, Silvia
    Ruiz, Vanesa
    Granda, Marcos
    Blanco, Clara
    Menendez, Rosa
    Santamaria, Ricardo
    ENERGY & FUELS, 2010, 24 (06) : 3329 - 3333
  • [9] Freestanding Activated Carbon Nanocomposite Electrodes for Capacitive Deionization of Water
    Hussain, Humair
    Jilani, Asim
    Salah, Numan
    Alshahrie, Ahmed
    MemiC, Adnan
    Ansari, Mohammad Omaish
    Dutta, Joydeep
    POLYMERS, 2022, 14 (14)
  • [10] Electrophoretic deposition of carbon nanotubes film electrodes for capacitive deionization
    Nie, Chunyang
    Pan, Likun
    Li, Haibo
    Chen, Taiqiang
    Lu, Ting
    Sun, Zhuo
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2012, 666 : 85 - 88