A hybrid algorithm with cluster analysis in modelling high dimensional data

被引:3
|
作者
Tunga, Burcu [1 ]
机构
[1] Istanbul Tech Univ, Fac Sci & Letters, Math Engn Dept, TR-34469 Istanbul, Turkey
关键词
High dimensional problems; Data modelling; Cluster analysis; Approximation; EMPR; MULTIVARIATE DATA;
D O I
10.1016/j.dam.2017.09.002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Multivariate data modelling aims to predict unknown function values through an established mathematical model. It is essential to construct an analytical structure using the given set of high dimensional data points with corresponding function values. The level of multivariance directly affects the modelling process. Increase in the number of independent variables makes the standard numerical methods incapable of obtaining the sought analytical structure. This work aims to overcome the difficulties of high multivariance and to improve the modelling quality by carrying out two main steps: data clustering and data partitioning. Data clustering step deals with dividing the whole problem domain into several clusters by performing k-means clustering algorithm. Data partitioning step performs the Enhanced Multivariance Product Representation method to partition the high dimensional data set of each cluster. The analytical structure is obtained through the partitioned data for each cluster and can be used to predict the unknown function values. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:161 / 168
页数:8
相关论文
共 50 条
  • [11] Hybrid cluster and data envelopment analysis with interval data
    Kianfar, K.
    Namin, M. Ahadzadeh
    Tabriz, A. Alam
    Najafi, E.
    Lotfi, F. Hosseinzadeh
    [J]. SCIENTIA IRANICA, 2018, 25 (05) : 2904 - 2911
  • [12] Analysis of Multi Cluster Projection on High Dimensional Data Based on Forest Scenario
    Shalin, Arun L., V
    Bharathi, A.
    Prasanth, T.
    [J]. PROCEEDINGS OF THE 2019 INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTING & COMMUNICATION ENGINEERING (ICACCE-2019), 2019,
  • [13] FACO: A Novel Hybrid Feature Selection Algorithm for High-Dimensional Data Classification
    Popoola, Gideon
    Oyeniran, Kayode
    [J]. SOUTHEASTCON 2024, 2024, : 61 - 68
  • [14] Hybrid Method for Cluster Analysis of Big Data
    Dabas, Chetna
    Nigam, Gaurav Kumar
    [J]. INTELLIGENT COMPUTING TECHNIQUES FOR SMART ENERGY SYSTEMS, 2020, 607 : 133 - 139
  • [15] Analysis on algorithm and application of cluster in data mining
    Information Engineering School, Nanchang University, Nanchang 330031, Jiang xi, China
    [J]. J. Theor. Appl. Inf. Technol., 1 (416-419):
  • [16] High-Dimensional Data Analysis Using Parameter Free Algorithm Data Point Positioning Analysis
    Mustapha, S. M. F. D. Syed
    [J]. APPLIED SCIENCES-BASEL, 2024, 14 (10):
  • [17] Modelling traffic accident data by cluster analysis approach
    Murat, Yetis Sazi
    Sekerler, Alper
    [J]. Teknik Dergi/Technical Journal of Turkish Chamber of Civil Engineers, 2009, 20 (03): : 4759 - 4777
  • [18] Modelling Traffic Accident Data by Cluster Analysis Approach
    Murat, Yetis Sazi
    Sekerler, Alper
    [J]. TEKNIK DERGI, 2009, 20 (03): : 4759 - 4777
  • [19] An algorithm of linear modelling for biomedical data analysis
    徐勇勇
    曹秀堂
    夏结来
    [J]. Military Medical Research, 1994, (03) : 181 - 185
  • [20] Cluster Validation for Subspace Clustering on High Dimensional Data
    Chen, Lifei
    Jiang, Qingshan
    Wang, Shengrui
    [J]. 2008 IEEE ASIA PACIFIC CONFERENCE ON CIRCUITS AND SYSTEMS (APCCAS 2008), VOLS 1-4, 2008, : 225 - +