Quantum Reservoir Computing Using Arrays of Rydberg Atoms

被引:14
|
作者
Bravo, Rodrigo Araiza [1 ]
Najafi, Khadijeh [1 ,2 ]
Gao, Xun [1 ]
Yelin, Susanne F. [1 ]
机构
[1] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA
[2] IBM T J Watson Res Ctr, IBM Quantum, Yorktown Hts, NY 10598 USA
来源
PRX QUANTUM | 2022年 / 3卷 / 03期
基金
美国国家科学基金会;
关键词
STATISTICAL-MECHANICS; BLOCKADE; TIME;
D O I
10.1103/PRXQuantum.3.030325
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Quantum computing promises to speed up machine-learning algorithms. However, noisy intermediate-scale quantum (NISQ) devices pose engineering challenges to realizing quantum machine-learning (QML) advantages. Recently, a series of QML computational models inspired by the noise-tolerant dynamics of the brain has emerged as a means to circumvent the hardware limitations of NISQ devices. In this paper, we introduce a quantum version of a recurrent neural network (RNN), a well-known model for neural circuits in the brain. Our quantum RNN (qRNN) makes use of the natural Hamiltonian dynamics of an ensemble of interacting spin-1/2 particles as a means for computation. In the limit where the Hamiltonian is diagonal, the qRNN recovers the dynamics of the classical version. Beyond this limit, we observe that the quantum dynamics of the qRNN provide it with quantum computational features that can aid it in computation. To this end, we study a fixed-geometry qRNN, i.e., a quantum reservoir computer, based on arrays of Rydberg atoms and show that the Rydberg reservoir is indeed capable of replicating the learning of several cognitive tasks such as multitasking, decision making, and long-term memory by taking advantage of several key features of this platform such as interatomic species interactions and quantum many-body scars.
引用
收藏
页数:19
相关论文
共 50 条
  • [21] Digital quantum simulation with Rydberg atoms
    Weimer, H.
    Mueller, M.
    Buechler, H. P.
    Lesanovsky, I.
    [J]. QUANTUM INFORMATION PROCESSING, 2011, 10 (06) : 885 - 906
  • [22] A coherent quantum annealer with Rydberg atoms
    A. W. Glaetzle
    R. M. W. van Bijnen
    P. Zoller
    W. Lechner
    [J]. Nature Communications, 8
  • [23] Applicability of Rydberg atoms to quantum computers
    Ryabtsev, II
    Tretyakov, DB
    Beterov, II
    [J]. JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2005, 38 (02) : S421 - S436
  • [24] Quantum Zeno Dynamics with Rydberg Atoms
    Facon, Adrien
    Signoles, Adrien
    Grosso, Dorian
    Dietsche, Eva-Katharina
    Dotsenko, Igor
    Haroche, Serge
    Raimond, Jean-Michel
    Brune, Michel
    Gleyzes, Sebastien
    [J]. 2015 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2015,
  • [25] Computing using Quantum Dynamics of Nanostructured Arrays
    Gross, Noam
    Donval, Ariela
    [J]. QUANTUM INFORMATION SCIENCE, SENSING, AND COMPUTATION XI, 2019, 10984
  • [26] Tunable two-dimensional arrays of single Rydberg atoms for realizing quantum Ising models
    Henning Labuhn
    Daniel Barredo
    Sylvain Ravets
    Sylvain de Léséleuc
    Tommaso Macrì
    Thierry Lahaye
    Antoine Browaeys
    [J]. Nature, 2016, 534 : 667 - 670
  • [27] Tunable two-dimensional arrays of single Rydberg atoms for realizing quantum Ising models
    Labuhn, Henning
    Barredo, Daniel
    Ravets, Sylvain
    de Leseleuc, Sylvain
    Macri, Tommaso
    Lahaye, Thierry
    Browaeys, Antoine
    [J]. NATURE, 2016, 534 (7609) : 667 - +
  • [28] Quantum chaos in Rydberg atoms: A quantum potential approach
    Chattaraj, PK
    Sengupta, S
    [J]. CURRENT SCIENCE, 1996, 71 (02): : 134 - 139
  • [29] Error-robust quantum signal processing using Rydberg atoms
    Zeytinoglu, Sina
    Sugiura, Sho
    [J]. PHYSICAL REVIEW RESEARCH, 2024, 6 (01):
  • [30] Development of Highly Homogenous Quantum Dot Micropillar Arrays for Optical Reservoir Computing
    Heuser, Tobias
    Grosse, Jan
    Holzinger, Steffen
    Sommer, Maximilian M.
    Reitzenstein, Stephan
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2020, 26 (01)